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destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
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ABSTRACT 

Reactions involving clay minerals during low-grade metamorphism at the depth of an ancient 

accretionary complex in the Shimanto Belt, Kyushu, Japan, were studied by integrated 

transmission electron microscopy-energy dispersive X-ray spectroscopy and X-ray diffraction 

analyses of the bulk rock and clay fraction. The analyzed metasediment (the Kitagawa unit) 

contain an incipient sub-horizontal slaty cleavage. Illite crystallinity data and mica b dimensions 

indicate that the conditions of metamorphic deformation were anchizone–epizone grade and 

intermediate pressure. Cleavage formation was linked to two reactions involving clay minerals: 

(1) the recrystallization of 1M–dominant matrix mica, inherited from the original sedimentary 

fabric, into thick, defect-free 2M1 packets along cleavage planes; and (2) the formation of 

chlorite from 7 Å berthierine. Balanced equations among the clay phases, based on 

compositional data and their relative abundance, suggest that the decomposition of matrix mica 

resulted in the formation of paragenetic mica and chlorite along the cleavage planes, without 

significant elemental outflux. Although a modal increase in phyllosilicates is not indicated by the 

data, the growth of chlorite and mica along cleavage planes may have a large influence on the 

rheological properties of a décollement and may be related to the occurrence of the 

seismic–aseismic transition at ~350 °C. 

Key words: accretionary prism; low-grade metamorphism; mica; chlorite; X-ray diffraction; 

transmission electron microscopy 
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1. Introduction 

The mechanical properties of sediments entering a subduction zone are progressively 

modified by dewatering, lithification, and deformation (Cowan, 1982; Byrne, 1984; Taira et al., 

1992; Moore et al., 2001; Moore and Saffer, 2001; Hashimoto et al., 2006; Kimura et al., 2007). 

Such modification along a plate boundary fault (i.e., a décollement) has a major influence on 

several aspects of accretionary prism dynamics, such as wedge geometry, internal structure, and 

seismicity (Wang and Hu, 2006; Hyndman, 2007; Kimura et al., 2007). In general, a décollement 

can be divided into three segments in terms of its mechanical regime: shallow and deep aseismic 

portions, and an intermediate seismic region (Hyndman et al., 1997; Hyndman, 2007). The upper  

of the two seismic–aseismic transitions occurs at temperatures of ~150 °C and is believed to be 

related to dewatering of subducted sediments due to tectonic loading and diagenetic dehydration 

reactions (e.g., smectite-illite transition and opal-quartz transition), which allow increase in 

effective normal stress of the décollement (Moore and Saffer, 2001; Spinelli and Saffer, 2004). 

Moreover, active carbonate, clay and quartz cementations around this temperature condition may 

cause sliding instability of the sediments (Moore and Saffer, 2001). On the other hand, onset of 

the aseismic behavior above ~350 °C is inferred to be related to the mechanical properties of 

subducted sediments subjected to low-grade metamorphism (Hyndman et al., 1997; Hyndman, 

2007). 

Although the nature of deep crustal structure in subduction zones remains debated, several 

seismic reflection surveys (particularly those undertaken at the Cascadia margin) suggest that the 

décollement widens with increasing depth to be several kilometers thick, forming reflection 

banding in a seismic profile (e.g., Nedimovic et al., 2003; Calvert et al., 2006). A candidate 
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material for such reflectors is plastically deformed metasediments affected by low-grade 

metamorphism, with a structure similar to that of mylonite zones. Therefore, phase transitions in 

subducted sediments, particularly those for phyllosilicates, are likely to influence aseismic 

faulting along deep décollements (Hyndman et al., 1997; Hyndman, 2007). Nevertheless, the 

brittle–ductile transition is rarely exposed at the surface, as most accretionary prism rocks do not 

reach the transition or are overprinted by late-stage higher-grade metamorphism. Consequently, 

little is known of the prograde evolution of mineral assemblages and their reaction pathways 

around the down-dip part of the seismogenic zone, which may control the mechanical transition 

from seismic to aseismic behavior. 

The Kitagawa unit, exposed on the easternmost side of the Kyushu Shimanto Belt, Japan, 

provides an opportunity to trace the progress of low-grade metamorphism within a subduction 

zone, because this unit records the highest metamorphic grade of the rocks within the Shimanto 

Belt (320–330 °C; Kondo et al., 2005) and comprises a complete succession ranging from 

shale/sandstone to intensely cleaved metasediment (Raimbourg et al., 2009). A structural analysis 

of the unit indicates that vertical loading, probably in a setting around the plate interface, 

produced the ubiquitous subhorizontal cleavage defined by networks of recrystallized chlorite 

and mica (Raimbourg et al., 2009). 

Illite crystallinity (IC) measurements on micas of the Kitagawa unit (Mukoyoshi et al., 2007, 

2009) yield lower values at a site located close to the Nobeoka Thrust (0.24 Δ°) compared with a 

site located more than 5 km from the thrust (0.31 Δ°). Because the intensity of deformation in 

this unit shows an increase toward the Nobeoka Thrust (Raimbourg et al., 2009), the observed 

trend in IC values is inferred to reflect the extent of mica growth, although additional analyses 
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are needed to characterize the complete sequence of metamorphic processes that occurs during 

the formation of a mature metapelite. 

The aim of the present study is to clarify several aspects of low-grade metamorphism of the 

Kitagawa unit, including its metamorphic setting, evolution of the mineral assemblage and bulk 

chemistry, and the reaction pathways of clay minerals. To this end, we subjected bulk samples 

and the clay fraction (<2 μm) to quantitative analyses by X-ray diffraction (XRD) and 

high-resolution transmission electron microscopy (HR-TEM), for samples that record varying 

degrees of deformation. Based on these data, we discuss the influence of low-grade 

metamorphism on the aseismic behavior of deep décollements. 

 

2. Geological setting 

The Shimanto Belt is an ancient accretionary complex that extends for 800 km along the 

Pacific side of southwest Japan (Fig. 1a). The belt is divided into northern and southern sub-belts, 

separated by the Aki Tectonic Line in the Shikoku and Kii regions, and by the Nobeoka Thrust in 

Kyushu. In eastern Kyushu, the Kitagawa Group was exhumed north of the Nobeoka Thrust, 

emplaced over the southern Hyuga Group (Fig. 1b). Metamorphic mineral assemblages suggest 

that the northern belt was metamorphosed in the greenschist facies (Toriumi and Teruya, 1988), 

whereas the southern belt was metamorphosed in the prehnite–pumpellyite to zeolite facies. 

The Kitagawa unit, a turbiditic sequence of alternating sandstone- and mudstone-rich layers 

that contain Eocene radiolarian fossils (Ogawaguchi et al., 1984), records two stages of 

deformation: an early stage of horizontal contraction, characterized by folding and thrusting, was 

overprinted by the development of a pervasive slaty cleavage during vertical shortening 
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(Raimbourg et al., 2009). The slaty cleavage is more pronounced in the deeper levels of the 

Kitagawa unit; i.e., closer to the Nobeoka Thrust. 

Vitrinite reflectance values (%Rm) obtained for the Kitagawa unit range from 5.33 to 5.63 

(Kondo et al., 2005), corresponding to maximum paleotemperatures of 320–330 °C based on the 

method proposed by Sweeney and Burnham (1990). These temperatures are similar to the 

estimated formation temperature of metamorphic chlorite (Raimbourg et al., 2009). 

The Hyuga Group, located south of the Nobeoka Thrust, possesses a shale-dominant mélange 

texture. Vitrinite reflectance data indicate temperatures of 250–270 °C (%Rm = 2.58–2.75; 

Kondo et al., 2005), which are 50–80 °C lower than those obtained for the Kitagawa unit. This 

difference in temperature suggests that the Nobeoka Thrust was active as an out-of sequence 

thrust (Ohmori et al., 1997), responsible for exhuming the unit from deep within the accretionary 

complex (Raimbourg et al., 2009). Faulting is thought to have occurred during ~40–48 Ma, as 

inferred from illite K–Ar and zircon fission track ages (Hara and Kimura, 2008). 

 

 

3. Experimental procedure  

Samples with various densities of cleavage planes were collected from the Kitagawa unit and 

were classified into the three groups proposed by Raimbourg et al. (2009): non-cleaved samples 

(NM) do not contain slaty cleavage; slightly cleaved samples (SlM) possess both cleavage and 

bedding; and strongly cleaved samples (StM) contain an intensively developed cleavage with 

little sign of the original bedding fabric. A total of 13 samples (6 NM samples, 3 SlM samples, 

and 4 StM samples) were analyzed (Table 1). 
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Representative portions of each sample were ground using a vibrational mill for 2 minutes 

under dry conditions for bulk XRD analyses. Each powder, mixed with high-purity corundum 

(AX-5H, Hinomoto Kenmazai Co., Japan) as an internal standard, was mounted on an XRD 

glass holder in a side-load manner to minimize any preferred alignment of phyllosilicates. The 

patterns were recorded using a Rigaku Rint-2000 with monochromatized CuK radiation at 40 

kV and 30 mA, with 1° divergence and anti-scattering slits, and a 0.3 mm receiving slit. The 2θ 

range of 2°–65° was scanned in step scan mode for 4 s, at steps of 0.04° 2θ. The RockJock 

program, developed by Prof. D.D. Eberl (Eberl, 2003), was used for quantitative analyses of rock 

composition. The XRD patterns were fitted using reference patterns for quartz, albite, calcite, 

pyrite, 1M and 2M1 micas, and trioctahedral chlorite, as stored in the program. 

To obtain the clay size fraction (<2 μm), rock chips were gently crushed by hand and 

dispersed ultrasonically in distilled water. The clay fraction was then separated by centrifugation 

and used for oriented analyses of clay minerals in air-dried (AD) and ethylene-glycolated (EG) 

states. The Newmod program (Reynolds, 1985) was used to interpret the XRD patterns. IC was 

measured based on the width of the 10 Å peak at half height, under the AD condition (Kübler, 

1968). The b dimension of mica was determined using the d-value of the mica 060 peak 

calibrated by the 221 peak of quartz at 1.541 Å (Merriman and Peacor, 1999). 

The TEM was operated at 200 kV to observe fine structures in minerals (JEM-2010, JEOL, 

Japan). Some TEM images were digitized using a CCD camera and processed to remove noisy 

contrast due to amorphous materials on the specimen surface, using a Wiener-filter (Marks, 

1996; Kilaas, 1998) developed by K. Ishizuka (HREM Research, Inc.), as implemented in Gatan 

Digital Micrograph version 3.10.0. The clay fraction powders were dispersed on a holey carbon 
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film supported by a Cu-grid for chemical analysis by energy dispersive X-ray spectrometer 

(EDX) in the TEM (EX-24025JGT, Jeol). To minimize the loss of alkali elements, which is 

significant in the analysis of clay minerals (van der Pluijm et al., 1988), beam diameter was 

extended to 200 nm and the counting duration was reduced to 30 seconds. Each grain was 

planarly exposed such that its c* axis was rotated by 20° from the beam axis toward the EDX 

detector. Quantitative chemical analyses were performed with k-factors for O, Na, Mg, Al, Si, K, 

Ca, Ti, Mn, and Fe determined from standard samples of biotite, albite, olivine, and hornblende. 

The atomic ratio was obtained by correcting for the effect of X-ray absorption by the specimen 

under the criterion of charge neutrality (Van Cappellen and Doukhan, 1994), using a program 

developed by one of the authors (T. Kogure). 

 

4. Results 

4.1. Deformation structures within sediment of the Kitagawa unit 

Microstructures and deformation stages of the Kitagawa unit have been described in detail by 

Raimbourg et al. (2009), and are briefly summarized here. The protolith of the low-grade 

metamorphic rocks is a turbiditic unit that was buried deep within the Shimanto 

paleo-accretionary prism, down to the base of the inner wedge. The protolith consists of 

alternating sandstone- and mudstone-rich layers with thicknesses of 2 mm to 10 cm. The 

sediment consists mainly of detrital quartz and minor plagioclase clasts embedded in a 

fine-grained matrix. The sandstone-rich layers contain a larger proportion of clasts than do the 

mudstone-rich layers. A small amount of detrital mica grains is scattered throughout the rock, 

with the grains being larger in the sandstone-rich layers (Fig. 2a, b, and b’). The microcrystalline 
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matrix is too fine-grained for its mineralogical composition to be determined optically. 

Macroscopically, the deformation is characterized by the development of a subhorizontal 

slaty cleavage that crosscuts and disrupts the original sedimentary fabrics. Structural and 

magnetic (AMS) analyses indicate that the kinematics of the associated deformation is mainly 

coaxial shortening, with a compressive axis oriented close to vertical (Raimbourg et al., 2009). 

At the microscopic scale, the cleavage consists of a dense network of mica and chlorite 

surrounding quartz and feldspar grains (Fig. 2c and c’). Both of these phyllosilicates have a 

shape-preferred orientation that defines the foliation, as indicated by their simultaneous 

extinction when rotating the microscope stage under cross-polarized light (Fig. 2c’). Micas are 

large (up to 100 μm long), while chlorite grains consist mostly of very thin, entangled fibers. 

 

4.2. XRD analyses of the clay fraction 

The Kitagawa unit contains a simple and uniform mineral assemblage through the succession, 

comprising quartz, plagioclase (albite), and phyllosilicates with accessory pyrite, Fe oxides, and 

rare calcite. However, as shown below, the abundance, composition, and crystallographic 

features of the phyllosilicates are progressively modified at different stages of cleavage 

formation. Figure 3 shows typical XRD patterns of the <2 μm size fraction for NM, SlM, and 

StM samples. The most common phase is dioctahedral mica. Table 1 summarizes the IC values 

of the analyzed samples. IC values for NM samples show a wide scatter from 0.20 to 0.41 Δ°, 

while those for SlM samples are 0.22–0.29 Δ°, and those for StM samples are within a limited 

range around 0.2 Δ°. The lowest of the IC values obtained for NM samples (~0.2 Δ°) probably 

reflect the presence of detrital mica, whereas a sharpening of the 001 reflection through SlM and 
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StM indicates the thickening of mica grains, which is ascribed mainly to recrystallized mica 

along cleavage planes. These IC values indicate that the low-grade metamorphism of this unit 

corresponds to the anchizone–epizone grade (the values that define the boundary between the 

diagenetic zone and the anchizone, and between the anchizone and epizone, are 0.42 and 0.25 Δ°, 

respectively; Merriman and Peacor, 1999). Although the present IC values are not interlaboratory 

standardized, comparable values have been reported from samples obtained near the Nobeoka 

Thrust (0.24 Δ°; Mukoyoshi et al., 2009) and from the northern part of the unit (0.31 Δ°; 

Mukoyoshi et al., 2007), for which the IC indexes were measured using the JIC (Japanese Illite 

Crystallinity Standard) scale, which was developed for paleothermal analyses of accretionary 

complexes (Hara and Kimura, 2003). JIC values are converted to the widely accepted CIS 

(Crystallinity Index Standard; Warr and Rice, 1994) by the following relation (Hara and Kimura, 

2003): IC (CIS) = 1.55  IC (JIC) – 0.07. For instance, the value of 0.24 Δ° (JIC) obtained at the 

southernmost part of the unit, within intensely cleaved rock (Mukoyoshi et al., 2009), is 

converted to 0.3 Δ° (CIS), corresponding to the metamorphic conditions of the boundary 

between the low and high anchizone (Merriman and Peacor, 1999). Metapelites of this grade 

commonly contain an incipient cleavage (Merriman and Peacor, 1999), which is consistent with 

the rocks of the present study area. 

The b length of mica has been used as a semi-quantitative barometer of crystallization 

conditions (Sassi and Scolari, 1974; Guidotti and Sassi, 1986). An increase (decrease) in b length 

is caused mainly by a greater (smaller) extent of phengite substitution (Guidotti et al., 1989). In 

the present study, the b values determined from mica 060 reflections range from 9.008 to 9.033 

Å (Table 1). The relatively deformed samples yield lower b values (Table 1), suggesting a 
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reduction of phengitic content in recrystallized mica toward more aluminous muscovite. 

The relative abundance of different polytypes in micas was qualitatively determined by 

analyzing random mounts of the clay fraction using XRD (Fig. 4). According to Caillère et al. 

(1982) and Dalla Torre et al. (1994), I(112) of 1M and I(025) of 2M1 are good indices for 

estimating the relative abundance of these polytypes because of their low sensitivity to the effect 

of mica preferred orientation or overlap with the feldspar peak. The intensity relations between 

the two reflections indicate a progressive transition from 1M to 2M1 from NM through SlM and 

StM (Fig. 4). 

In addition to mica, chlorite occurs as a clay phase. Although chlorite does not appear in 

some of the NM samples, the 14 Å and 7 Å peaks become more distinctive with increasing 

metamorphic grade (Fig. 3). This observation indicates the progressive growth of chlorite within 

the slaty cleavage. However, the intensity of the 7 Å reflection relative to that of 14 Å is much 

higher than that of a theoretical chlorite XRD pattern, using a structural formula determined by 

the present EDX analyses (see Section 4.5.). This discrepancy is probably caused either by peak 

overlap with another 7 Å phase or the interstratification of 7 Å layers within the chlorite 

stacking; the latter is more probable, given the broad and diffuse 001 reflection (Reynolds, 1988). 

Such a broad 001 peak is more common in NM than in SlM and StM samples (Table 1). 

A candidate material for the 7 Å phase in metapelites is kaolin minerals. We tested for the 

occurrence of kaolin by performing an acid treatment test (2 hours immersed in 1 N HCl at 

60 °C). The complete disappearance of the 7 Å peak after the test suggests that the mineral is 

more likely to be Fe-bearing berthierine, which is highly reactive with acid. The occurrence of 

chlorite–berthierine, as well as the fine structures of micas, was further examined by TEM (see 
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Section 4.4.). 

 

4.3. Quantitative bulk-rock composition determined by RockJock 

The nature of prograde changes in the bulk-rock composition was quantitatively analyzed 

using RockJock (Eberl, 2003), which can be used to estimate the relative proportions of different 

polytypes in illite–muscovite (Aldega and Eberl, 2005). Accessory minerals (e.g., Fe oxides and 

rutile) occur in trace amounts (<0.5 wt%) and were excluded from the analyses. Table 1 lists the 

obtained relative abundances (wt%). Using this program, the total weight percent is a measure of 

analytical quality, because the content of each mineral is estimated independently with respect to 

the internal standard of corundum (Eberl, 2003). In the present study, the deviation from a total 

of 100% is within ±2%, except for one sample (Table 1), indicating the high quality of the 

analyses. The data for the sample that yielded a low total (HN24) were recalculated to 100%, to 

enable a comparison with the other samples. 

Figure 5a shows a clear trend of 1M-to-2M1 conversion in micas with progressive 

deformation; NM samples show a wide range of 1M/(1M + 2M1) values, ranging from 0.3 to 1.4, 

but values are below 0.1 in StM samples. This finding is consistent with XRD analyses of the 

clay fraction (Fig. 3). This reaction is concomitant with the growth of chlorite (Fig. 5b). 

Although chlorite is scarcely distributed and is sometimes absent in NM, it makes up 

approximately 40% of the mica content in StM samples. Such chlorite growth is also 

qualitatively compatible with the results of XRD analyses of the <2 μm fraction (Fig. 3). 

Variations in the total clay content, which have a strong influence on rheology (e.g., Brown et 

al., 2003), are shown as the summation of 1M mica, 2M1 mica, and chlorite (Fig. 5c). The clay 
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content does not show a large increase with cleavage formation (showing an average change of 1 

wt% from NM to StM; Table 1), but the large variation in NM samples is reduced to a uniform 

composition with cleavage development. The initial variation in NM samples probably reflects 

variations in grain size (i.e., the ratio of clay- to silt-size grains) within the bulk samples, which 

are subsequently homogenized in terms of rock composition and fabric by the recrystallization 

and neocrystallization of phyllosilicates along cleavage planes, thereby diminishing the original 

sedimentary-related variations. 

 

4.4. Microtextural and crystallographic analyses of phyllosilicates by TEM 

The analyzed metapelite contains basically two forms of micas (Raimbourg et al., 2009): 

matrix mica inherited from the original sedimentary fabric, and recrystallized mica that defines 

the cleavage. TEM images showed that the matrix mica has variable packet thickness, from <30 

nm to >100 nm, with several strain features such as voids and layer terminations (white arrows in 

Fig. 6a). In places, we observed relatively ordered, selected-area electron diffraction (SAED) 

patterns with dominantly 1M stacking, although accompanied by packets showing two-layer 

(2M1) periodicities (Fig. 6b). Stacking disorders are visible, even in crystals that yield ordered 

ED patterns (Fig. 6b). 

Recrystallized mica that occurs along cleavage planes has a relatively homogeneous 

thickness (mostly >100 nm) and has fewer defects than the matrix mica (Fig. 6c). Although 1M 

was occasionally present, 2M1 was more commonly observed. 

Chlorite occurs as well-defined packets (>100 nm thick) and is oriented parallel to the 

cleavage (Fig. 7a). Lattice fringe images reveal the presence of 7 Å berthierine (Fig. 7b and c), 
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which is generally intergrown with 14 Å chlorite layers at the monolayer level rather than 

forming discrete packets. In some cases, berthierine constitutes the larger fraction of a single 

packet (Fig. 7b). The interstratification of berthierine and chlorite is commonly observed in 

diagenetic to low-grade metamorphic rocks (Lee et al., 1984; Ahn and Peacor, 1985; 

López-Munguira and Nieto, 2000) and in synthetic samples (Velde, 1973; James et al., 1976). 

The interstratified phases are considered to represent a transient state toward a mature chlorite. In 

Fig. 7d, two berthierine layers (TOTO) are transformed to a single chlorite layer (TOT and one 

brucite-like B layer) by tetrahedral inversion (white bracket in the figure), strongly suggesting a 

solid-state conversion, as discussed in detail by Xu and Veblen (1996). 

 

4.5. TEM–EDX chemical analyses 

The chemical compositions of chlorite in the present samples were measured by Raimbourg 

et al. (2009) using electron microprobe analyzer (EMPA), and were employed to estimate the 

formation temperature of chlorite based on the chemical thermometer developed by Vidal and 

Parra (2000). However, the grain size of clays is generally too small to be measured satisfactorily 

by EMPA; thus, we re-examined the composition of mica and chlorite by EDX in TEM (Tables 2 

and 3). The Si content of micas in NM samples ranges from 3.0 to 3.5 if normalized to O10(OH)2, 

but the range of values is smaller in SlM and StM samples (3.1–3.3), which have a high 

interlayer charge; i.e., Na + K = ~1.0 (Fig. 8a). The interlayer composition is characterized by a 

low Na content (Na/(Na + K) < 0.15) for all deformation stages (Table 2). In addition to a low 

interlayer deficiency, SlM and StM samples have low Mg + Fe contents (Fig. 8b) and a small 

Fe/(Fe + Mg) ratio (Fig. 8c) compared with NM. The depletion in mafic elements is consistent 
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with the low phengitic content inferred from the lower b dimensions in SlM and StM samples 

(Table 1).  

Figure 9 shows the chemical compositions of chlorite determined by TEM–EDX, along with 

data measured by EMPA (Raimbourg et al., 2009). The two techniques yield comparable results, 

indicating that element contamination during EMPA is not significant. There is almost no 

compositional variation among the samples of different metamorphic grade. 

 

5. Discussion 

5.1. Clay mineral reactions in the Kitagawa unit during anchizone–epizone grade 

metamorphism 

The exposure of a series of lithologies ranging from shale/sandstone with well-preserved 

sedimentary fabrics to moderately or intensely deformed slates enables a discussion on the 

change in mineralogy that occurs during cleavage formation in the Kitagawa unit. As shown 

above, clay minerals in the unit are restricted to two types: dioctahedral micas and trioctahedral 

chlorite. Although many factors (e.g., temperature, pressure, bulk rock composition, and 

fluid–rock ratio) may affect the mineral assemblage and its evolution in low-grade metamorphic 

rocks (Merriman and Peacor, 1999), Merriman (2002) showed that the clay mineralogy of a slate 

belt in the British Isles is strongly dependent on the regional geotectonic setting. Many different 

species of clay minerals can be observed in extensional basins, including the aluminous 

kaolin–pyropyllite and sodium mica–paragonite series, as well as dioctahedral K-mica and the 

trioctahedral 2:1 series. This variation in clay mineralogy is due to intense seawater circulation or 

the intrusion of volcanic rocks, especially during sedimentation (Merriman, 2002). In contrast, 
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the restricted circulation of seawater or absence of high-Na/K fluids may reduce such diversity in 

convergent basins (Merriman, 2002). This may explain the poor diversity of clay minerals in the 

present samples, as well as the absence of kaolin and pyrophyllite, and the low sodium content in 

the mica interlayer. 

Despite the invariant K-dominant interlayer composition, the crystallographic features of 

mica are modified by deformation-induced recrystallization. Bulk-rock XRD analyses and 

microscopic observations by TEM suggest that the matrix mica, which is 1M, is converted to 

2M1 packets along cleavage planes. In addition, strain-related structures are healed to form thick, 

defect-free packets, which is also indicated by the low IC values obtained for deformed samples. 

Such crystallographic maturation has been widely recognized in anchizone-grade metapelites 

that show the development of incipient slaty cleavage (Lee et al., 1986; Li et al., 1994). 

Unlike the characteristic conversion of micas, the origin of chlorite is somewhat problematic. 

Chlorite in metapelites is commonly derived from a prograde reaction that originates from 

trioctahedral smectite via corrensite (e.g., Hillier, 1993; Schmidt and Livi, 1999). However, the 

formation of Fe–Mg-rich smectite within an accretionary prism is generally localized to specific 

lithologies such as incorporated oceanic crust (e.g., Kameda et al., in review), which is not found 

in the Kitagawa unit. Previous studies have noted that chlorite forms via the conversion of 

dioctahedral smectite to illite (Hower et al., 1976; Ahn and Peacor, 1985), because of the typical 

depletion of mafic elements in illite relative to the starting smectite (Drief and Nieto, 2000). In 

the present case, however, the chlorite content is generally low prior to deformation (Fig. 5b) and 

it is locally absent, despite the completion of smectite-to-illite conversion, which typically occurs 

at <150 °C. This reaction may have contributed to some of the chlorite in the NM samples, but 
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the progressive growth of chlorite from the SlM to StM samples (Fig. 11b) requires another 

process, possibly the decomposition of matrix mica of phengitic composition to form paragenetic 

mica and chlorite along cleavage planes. The likelihood of this reaction is evaluated with 

reference to the following balanced equation. We roughly consider that the increment of chlorite 

from NM to StM samples (by 10 wt% on average) and the total mica content in StM samples (22 

wt%) reflect the effects of recrystallization. Based on the chemical composition determined by 

EDX (Tables 2 and 3), the molar weight of mica and chlorite per structural formula in StM 

samples is 395 and 636, respectively. Then, the molar ratio of the final product between the total 

mica content in StM samples (22 wt%) versus the increase in chlorite content from NM to StM 

samples (10 wt%) is estimated to be 22/395:10/636 = 1:0.275. Assuming the amount of Al2O3 to 

be constant throughout the reaction, the molar ratio of the starting material (mica in NM 

samples) required to complete the reaction is derived from the flowing equation: 

1.35  (K0.83Na0.06)(Fe0.17Mg0.28Al1.64)(Si3.22Al0.70Ti0.08)O10(OH)2   

(K0.92Na0.05)(Fe0.1Mg0.26Al1.68)(Si3.24Al0.72Ti0.04)O10(OH)2 +  

0.275  (Al1.54Fe2.7Mg1.6)(Si2.70Al1.22Ti0.07)O10(OH)8 + 0.16K
+
 + 0.023Na

+
 – 0.45Fe

2+
 – 

0.24Mg
2+

 + 0.03Ti
4+

 + 0.27Si
4+

   (1). 

This equation indicates that about 30 wt% (= 22 wt%  1.35) of the starting material is needed, 

which is compatible with the average mica content in NM samples (31 wt%). The mass balance 

results, based on Al conservation, support the validity of reaction (1). However, this reaction 

requires the presence of Mg
2+

 + Fe
2+

. The origin of these elements is uncertain, but may have 

been other mafic minerals such as detrital biotite, pyrite, or Fe-oxides. 

When this reaction proceeds, berthierine may occur as a precursor. As mentioned above, the 
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XRD patterns of the oriented clay preparations show a weak, broad 14 Å reflection relative to 

pure chlorite (001), which is ascribed to interstratification between berthierine and chlorite. 

Hillier and Velde (1992) used NEWMOD (Reynolds, 1985) to calculate the one-dimensional 

XRD pattern of interstratified chlorite–berthierine with a variable mixture ratio, and obtained a 

near-linear correlation between berthierine content (5%–35%) and width (°2θ) at half the height 

of the 14 Å peak, independent of chemistry and crystallite thickness. Our experimental patterns 

show a sharpening of the 14 Å peak from NM samples (0.25–0.37 of width at half peak height; 

average, 0.282) to SlM (0.265) and StM (0.192) (Table 1). Based on fig. 7 in Hillier and Velde 

(1992), NM is estimated to contain >5% berthierine. The reduction in berthierine content is 

interpreted to reflect post-precipitated conversion from berthierine layers to mature chlorite in a 

solid-state manner, as observed by TEM (Fig. 7d). 

 

5.2. Element flux during cleavage formation 

The mass flux of elements during slate formation has been extensively studied in recent 

decades. For example, studies of kinematic strain (e.g., Write and Platt, 1982; Beutner and 

Charles, 1985; Brandon et al., 1991) have shown a significant volume loss (30%–60%) in slates, 

but Erslev (1998) noted that such estimates are based on a misinterpretation of complicated, 

heterogeneous strain and metamorphic reactions, and emphasized the near-isochemical nature of 

the slates, as also indicated by geochemical signatures (Shaw, 1954; Ague, 1991; Wintsch et al., 

1991). The extent of element flux may be recorded in the resultant mineral assemblage, but few 

studies have provided quantitative data on slate composition. Ward and Gomez-Fernandez 

(2003) applied the Rietveld method to Spanish roofing slates, and assessed the applicability of 
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quantitative analyses with respect to the bulk chemical composition, although the authors did not 

quantify the degree of modal change during slate formation. 

Lee et al. (1986) performed a semi-quantitative XRD analysis of mudstone/slate samples and 

compared the relative intensity of the constituent minerals, indicating an approximately 

homogeneous rock composition across the lithologic trnsition. The quantitative data of the 

present study indicate a near-constant modal composition, considering the average values for 

samples from each deformation stage (Table 1). For example, the content of quartz, which is one 

of the main mobile elements, deviates by just ~4 wt% from 40 wt%; thus, it is unlikely that 

volume outflux occurred on the order of several tens of weight percent.  

Van de Kamp (2008) suggested that measurable amounts of SiO2 (~20 wt%) are released by 

the illite-to-muscovite conversion. Equation (1) indicates that the production of 1.0 mole of 

cleavage-parallel mica leads to 0.26 moles of SiO2 release, corresponding to 1 wt% at most (= 22 

wt%  0.26  60/395). Thus, in the present case, negligible amounts of SiO2 were released via 

reactions involving clay minerals. 

Raimbourg et al. (2009) performed XRF analyses of bulk samples (the same samples as those 

analyzed in the present study), revealing that the concentration of immobile TiO2 is inversely 

related to the concentration of mobile SiO2. The authors proposed that any outflow of SiO2 

would have been caused primarily by quartz dissolution. However, in terms of the relation 

between SiO2 content and deformation, their data show a high degree of scatter. This result, 

combined with the constant modal composition of samples of variable metamorphic grade, 

suggests that SiO2 outflow occurred prior to cleavage formation, during diagenesis at shallow 

levels (e.g., Renard et al., 1999; Yang, 2000; Kawabata et al., 2007); thus, high fluxes of 
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elements would not have occurred during anchizone metamorphism. 

 

5.3. Geotectonic setting of the Kitagawa unit and implications for the weak and aseismic 

nature of the deep décollement 

Previous studies have estimated the peak paleotemperature of the Kitagawa unit. Based on 

vitrinite reflectance values, Kondo et al. (2005) estimated thermal maturation at 320–330 °C. 

Application of the chlorite geothermometer developed by Vidal and Parra (2000) yielded an 

average temperature of ~272 °C (Raimbourg et al., 2009), although the data show a wide scatter 

corresponding to temperatures of 200–400 °C. Mukoyoshi et al. (2007) and Underwood et al. 

(1993) derived regression equations for IC–temperature relations applicable to paleothermal 

analysis of the Shimanto accretionary complex. The IC value of 0.24 Δ° obtained near the 

Nobeoka Thrust (Mukoyoshi et al., 2009) corresponds to temperatures of 304±30 °C and 

330 °C, respectively. The use of our IC value for StM samples (0.2 Δ°) yields slightly higher 

temperatures of 312±30 °C and 347 °C. Considering these estimates, a metamorphic 

temperature of 300–350 °C is an appropriate estimate for the Kitagawa unit. 

Although there are few direct constraints on the peak burial depth, Raimbourg et al. (2009) 

estimated a minimum burial depth of ~6 km based on a high geothermal gradient of 50 °C/km 

in the Eocene, influenced by the subduction of a young, hot oceanic plate (Sakaguchi, 1999). 

This high regional geotherm may be overestimated.  

The b dimensions of micas in the analyzed samples show a narrow range of 9.01–9.03 Å 

(9.02 Å on average; Table 1), and StM samples yield values on the lower side of this range 

(~9.01 Å). According to the regression relation between cell parameters and the composition of 
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2M1 mica (Guidotti et al., 1989), a b dimension of ~9.01 Å is estimated to correspond to a Mg + 

Fe content of 0.4 in the case of an interlayer composition of Na/(Na + K) < 0.15, which is 

consistent with the mica composition determined independently by EDX (Table 2). The 

consistency of the two parameters indicates that the b dimension is a reliable measure of 

metamorphic conditions, as suggested by Abad et al. (2003). The b dimensions obtained in the 

present study, which range from 9.01 to 9.03 (Table 1), are within the values of 9.0 and 9.04 

assigned by Guidotti and Sassi (1986) to the lower/upper limit of the intermediate-pressure 

facies series for a geothermal gradient of 25–35 °C/km. Although the thermal structure of a 

subduction zone may show some longitudinal variations rather than being isothermal (e.g., 

Nankai, Watanabe et al., 1970; Yamano et al., 1984, 2003), the Kitagawa unit may have 

experienced burial in an area with a geothermal gradient of 25–35 °C/km, at least at the time of 

mica formation. At this time, the minimum burial depth of the Kitagawa unit would have been 

at least 8.5 km, further supporting the proposal by Raimbourg et al. (2009) that the rock has 

been transported far below the frontal contractional setting of the prism (4–5 km thick in the 

case of modern complexes), where it was subjected to vertical compaction (Raimbourg et al., 

2009). 

It is uncertain how closely the Kitagawa unit approached the ancient décollement, but 

temperatures of 300 °C or more suggest a vertical separation of less than 2 km (for a geothermal 

gradient of 25–30 °C/km), if the unit was located just above the area where the 350 °C isotherm 

intersects the décollement. This distance (between the Kitagawa unit and the décollement) 

increases (decreases) as the location of the unit is shifted landward (seaward). 

Seismic reflection surveys of the Cascadia margin (Nedimovic et al., 2003; Calvert et al., 
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2006) suggest that a deep aseismic décollement has a banded reflection structure, extending 

regionally at depths of 5–8 km from the top of the subducting slab. These studies proposed that 

the structure corresponding to this reflector is a ductile shear zone composed of foliated 

metasediment. It is likely that subhorizontal slaty cleavage within the Kitagawa unit would 

produce such a seismic structure. 

Previous sliding experiments on crustal rock (granite) indicate that the seismic–aseismic 

transition occurs at ~350 °C, possibly related to pressure solution creep of quartz (Blanpied et al., 

1991, 1995). This observation may explain the down-dip limit of seismogenic subduction zones 

(Hyndman et al., 1997). However, the sediments analyzed in the present study are rich in 

phyllosilicates, meaning that it is uncertain whether the rheology of the subducted sediments is 

controlled by quartz deformation. In the case of the Kitagawa unit, we consider that chlorite 

growth would have had a marked effect on the bulk-rock rheology, because of the ready 

activation of (001) glide, giving rise to plastic deformation even below 300 °C (Bons, 1988). The 

stable (i.e., aseismic) and low-friction behavior of chlorite (Ikari et al., 2009) may be related to 

such intracrystalline deformation. Although the chlorite content in the present study is <12 wt% 

within intensely cleaved samples, Collettini et al. (2009) experimentally showed that even a 

small amount of phyllosilicates (in their case, 5% talc) may control the mechanical behavior of a 

fault zone if they form a dense network, thereby maintaining the long-term shear strength at a 

reasonably low level. In the present case, the occurrence of a well-organized network of micas 

and chlorite may explain the aseismic behavior of the deep décollement. 

 

6. Conclusion 
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Our mineralogical study on the Kitagawa unit of the Shimanto accretionary prism showed 

that the growth of paragenetic mica and chlorite during anchizonal-epizonal low-grade 

metamorphism contributed to the development of a pervasive slaty cleavage. The reactions 

proceeded without large elemental flux or modal fluctuations in phyllosilicate content. The 

mechanical transition from seismic to aseismic behavior along the deep décollement is 

attributable in part to the progressive development of subhorizontal mica and chlorite networks, 

similar to those observed at the surface.  

 

Acknowledgements 

Fabrizio Storti and two anonymous reviewers are thanked for their constructive comments which 

helped to improve the manuscript. This work was financially supported by a Grant-in-Aid for 

Scientific Research from MEXT-KAKENHI 21107005. 

 

References 

Abad, I., G., Gutierrez-Alonso, F., Nieto, I., Getner, A., Becker and A., Cabero (2003) The 

structure and the phyllosilicates (chemistry, crystallinity and texture) of Talas Ala-Tau (Tien 

Shan, Kyrgyz Republic): comparison with more recent subduction complexes. Tectonophys. 

365, 103-127. 

Ague, J.J. (1991) Evidence for major mass transfer and volume strain during regional 

metamorphism of pelites. Geology, 19, 855-858. 

Ahn, J.H., and D.R., Peacor (1985) Transmission electron microscopic study of diagenetic 

chlorite in Gulf Coast argillaceous sediments. Clays and Clay Minerals, 33, 228-236. 



 24 

Aldega, L., and D.D., Eberl (2005) Detrital illite crystals identified from crystallite thickness 

measurements in siliciclastic sediments. American Mineralogist, 90, 1587-1596. 

Beautner, E.C., and E.G., Charles (1985) Large volume loss during cleavage formation, Hamburg 

sequence, Pennsylvania. Geology, 13, 803-805. 

Blanpied, M.L., D.A., Locknar, and J.D., Byerlee (1991) Fault stability inferred from granite 

sliding experiments at hydrothermal conditions. Geophysical Research Letters, 18, 609-612. 

Blanpied, M.L., D.A., Locknar, and J.D., Byerlee (1995) Frictional slip of granite at 

hydrothermal conditions. Journal of Geophysical Research, 100, 13,045-13,064. 

Bons, A.J. (1988) Deformation of chlorite in naturally deformed low-grade rocks. 

Tectonophysics, 154, 149-165. 

Brandon, M.T., J.G., Feeham, and S.R., Paterson (1991) Volume strain associated with 

pressure-solution deformation in sandstones from high P-low T terrains: A third of the rock is 

missing! Geol. Soc. Am. Abs. with Programs, 23, A362. 

Brown, K.M., A., Kopf, M.B., Underwood, and J.L., Weinberger (2003) Compositional and fluid 

pressure controls on the state of stress on the Nankai subduction thrust: A weak plate 

boundary. Earth and Planetary Science Letters, 214, 589-603. 

Byrne, T. (1984) Structural evolution of mélange terranes in the Ghost Rocks Formation, Kodiak 

Island, Alaska, in Mélanges, their origin and significance, edited by L. Raymond, pP 21-51, 

Special Publication of Geological Society of America, 198. 

Caillère, S., S., Henin, and M., Rautureau (1982) Mineralogie des Argiles. Act. Sci. Agr. De 

L’I.N.R.A. 8, Masson, Paris. 

Calvert, A.J., K., Ramachandran, H., Kao, and M.A. Fisher (2006) Local thickening of the 



 25 

Cascadia forarc crust and the origin of seismic reflectors in the uppermost mantle. 

Tectonophysics, 420, 175-188.  

Collettini, C., A., Niemeijer, C., Viti, and C., Marone (2009) Fault zone fabric and fault weakness. 

Nature, 462, 907-U98,  

Cowan, D.S. (1982) Deformation of partly dewatered and consolidated Franciscan sediments 

near Piederas Blancas Point, California, in: L.J.K. (Ed.) Trench-Forearc Geology, Geological 

Society Special Publication, vol. 10, Geological Society of London, pp439-457. 

Dalla Torre, M., W.B., Stern, and M., Frey (1994) Determination of white K-mica polytype 

ratio-comparison of different XRD methods. Clay Minerals, 29, 717-726. 

Drief, A., and F., Nieto (2000) Chemical composition of smectites formed in clastic sediments. 

Implication for the smectite-illite transformation. Clay. Miner., 35, 665-678. 

Eberl, D.D. (2003) User guide to RockJock-A program for determining quantitative mineralogy 

from X-ray diffraction data, 40p. U.S. Geological Survey Open File Report OF 03-78. 

Erslev, E.A. (1998) Limited, localized nonvolatile element flux and volume change in 

Appalachian slates. Geol. Soc. Am. Bull., 110, 900-915. 

Guidotti, C.V., and F.P., Sassi (1986) Classification and correlation of metamorphic facies series 

by means of muscovite b0 data from low-grade metapelites: Neues Jahrbuch fur Mineralogie 

Abhandlungen, 153, 363-380. 

Guidotti, C.V., F.P. Sassi, and J.G., Blencoe (1989) Compositional control on the a and b cell 

dimensions of 2M1 muscovite. Eur. J. Mineral. 1, 71-84. 

Hara, H., and K., Kimura (2003) New proposal of standard specimens for illite crystallinity 

measurement: Its usefulness as paleo-geothermal indicator. Bull. Geol. Survey Japan, 54, 



 26 

239–50. 

Hara, H., and K., Kimura (2008) Metamorphic and cooling history of the Shimanto accretionary 

complex, Kyushu, Southwest Japan: Implication for the timing of out-of-sequence thrusting. 

The Island arc, 17, 546-559. 

Hashimoto, Y., T., Nakaya, M., Ito, and G., Kimura (2006) Tectonic lithification of sandstone 

prior to th eonset of seismogenic zone: evidence of tectonic mélange of the Shimanto Belt, 

Japan. Geochem., Geophys., Geosyst. 7, Q06013, doi:10.1029/2005GC001062. 

Hillier, S., and B., Velde (1992) Chlorite interstratified with a 7 a mineral: An example from 

offshore Norway and possible implications for the interpretation of the composition of 

diagenetic chlorites. Clay Minerals, 27, 475-486. 

Hiller, S. (1993) Origin, Diagenesis, and mineralogy of chlorite minerals in Devonian lacustrine 

mudrocks, Orcadian basin, Scotland. Clays and Clay Minerals, 41, 240-259. 

Hower, J., E.V., Eslinger, M.E., Hower, and E.A., Perry Jr. (1976) Mechanism of burial 

metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence. Geol. Soc. 

Amer. Bull. 87, 725-737. 

Hyndman, R.D., M., Yamano, and D.A., Oleskevich (1997) The seismogenic zone of subduction 

thrust faults. The Island Arc, 6, 244-260. 

Hyndman, R.D. (2007) The seismogenic zone of subduction thrust faults: what we know and 

don’t know. In: T. Dixon and J. Moore, Editors, The Seismogenic Zone of Subduction Thrust 

Faults, Colombia University Press, New York, pp. 15-41. 

Ikari, M.J., D.M. Saffer, and C., Marone (2009) Frictional and hydrologic properties of clay-rich 

fault gouge. Journal of Geophysical Research, 114, B05409, doi:10.1029/2008JB006089. 



 27 

James, R.S., A.C. Turnock, and J.J., Fawcett (1976) Stability and phase relations of iron chlorite 

below 8.5 kb PH2O. Contribution to Mineralogy and Petrology, 56, 1-25. 

Kameda, J., K., Ujiie, A., Yamaguchi and G. Kimura (in review) Smectite to chlorite conversion 

by frictional heating along a subduction-zone thrust. Earth and Planetary Science Letters. 

Kawabata, K, H. Tanaka, and G., Kimura (2007) Mass transfer and pressure solution in deformed 

shale of accretionary complex: Examples from the Shimanto Belt, southwest Japan. Journal 

of Structural Geology, 29, 697-711. 

Kilaas, R. (1998) Optical and near-optical filters in high-resolution electron microscopy. Journal 

of Microscopy, 190, 45-51. 

Kimura, G, Y. Kitamura, Y., Hashimoto, A., Yamaguchi, T., Shibata, K., Ujiie, and S., Okamoto 

(2007) Transition of accretionary wedge structures around the up-dip limit of the seismogenic 

subduction zone. Earth and Planetary Science Letters, 255, 471-484. 

Kondo, H., G., Kimura, H., Masago, K., Ohmori-Ikehara, Y., Kitamura, E. Ikesawa, A., 

Sakaguchi, A. Yamaguchi, and S., Okamoto (2005) Deformation and fluid flow of a major 

out-of-sequence thrust located at seismogenic depth in an accretionary complex: Nobeoka 

Thrust in the Shimanto Belt, Kyushu, Japan. Tectonics, 24. 

Kübler, B. (1968) Evaluation quantitative du métamorphism par la cristallinite de l’illité. Etat des 

progrèss réalizés ces dernières années. Bull. Centre Rech. Pau, S.N.P.A., 2, 385-397. 

Lee, J.H., D.R., Peacor, D.D., Lewis, and R.P., Wintsch (1984) Chlorite-illite/muscovite 

interlayered and interstratified crystals: A TEM/STEM study. Contribution to Mineralogy and 

Petrology, 88, 372-385. 

Lee, J.H., D.R., Peacor, D.D., Lewis, and R.P., Wintsch (1986) Evidence for syntectonic 



 28 

crystallization for the mudstone to slate transition at Leigh Gap, Pennsylvania, USA. Journal 

of Structural Geology, 8, 767-780. 

Li, G., D.R., Peacor, R.J. Merriman, B. Roberts, and B.A. Van der Pluijm (1994) TEM and AEM 

constraints on the origin and significance of chlorite-mica stacks in slates: an example from 

Central Wales, U.K. Journal of Structural Geology, 16, 1139-1157. 

López-Munguira, A., and F., Nieto (2000) Transmission electron microscopy study of very 

low-grade metamorphic rocks in Cambrian sandstones and shales, Ossa-Morena zone, 

southwest Spain. Clays and Clay Minerals, 48, 213-223. 

Marks, L.D. (1996) Wiener-filter enhancement of noisy HREM images. Ultramicroscopy, 62, 

43-52. 

Merriman, R.J., and D.R., Peacor (1999) Very low-grade metapelites; mineralogy, microtextures 

and measuring reaction progress, Pp. 10-60 in: Low-grade metamorphism (M. Frey & D. 

Robinson eds.). Blackwell Science, Oxford, UK. 

Merriman, R.J. (2002) Contrasting clay mineral assemblages in British Lower Paleozoic slate 

belts: the influence of geotectonic setting. Clay Miner. 37, 207-219. 

Moore, G.F., A., Taira, A., Klaus, L., Becker, B., Boeckel, B.A., Cragg, A., Dean, C.L., 

Fergusson, P., Henry, S., Hirano, T., Hisamitsu, S., Hunz, M., Kastner, A.J., Maltman, J.K. 

Morgan, Y., Murakami, D.M., Saffer, M., Sanchez-Gomez, E.J., Screaton, D.C., Smith, A.J., 

Spivak, J., Steurer, H.J., Tobin, K., Ujiie, M.B., Underwood, and M., Wilson (2001) New 

insights into deformation and fluid flow processes in the Nankai Trough accretionary prism: 

results of Ocean Drilling Program Leg 190. Geochemistry Geophysics Geosystems, 2, 

2001GC000166.  



 29 

Moore, J.C., and D., Saffer (2001) Updip limit of the seismogenic zone beneath the accretionary 

prism of southwest Japan: an effect of diagenetic to low-grade metamorphic processes and 

increasing effective stress. Gology, 29, 183-186. 

Mukoyoshi, H., H., Hara, and O.K., Ikehara (2007) Quantitative estimation of temperature 

conditions for illite crystallinity: Comparison to vitrinite reflectance from the Chichibu and 

Shimanto accretionary complexes, eastern Kyushu, Southwest Japan. Bulletin of the 

Geological Survey of Japan, 58, 23-31. 

Mukoyoshi, H., T., Hirono, H., Hara, K., Sekine, N., Tsuchiya, A., Sakaguchi, and W., Soh 

(2009) Style of fluid flow and deformation in and around an ancient out-of-sequence thrust: 

An example from the Nobeoka Teotonic Line in the Shimanto accretionary complex, 

Southwest Japan. Island Arc, 18, 333-351. 

Nedimovic, M.R., R.D., Hyndman, K., Ramachandran, and G..D., Spence (2003) Reflection 

signature of seismic and aseismic slip on the northern Cascadia subduction interface. Nature, 

424, 416-420. 

Ohmori, K., A., Taira, H., Tokuyama, A., Sakaguchi, M., Okamura, and A., Aihara (1997) 

Paleothermal structure of the Shimanto accretionary prism. Geology, 25, 327-330. 

Ogawauchi, Y., A., Iwamatsu and A., Tanabe (1984) Stratigraphy and geologic structures of the 

Shimanto supergroup in the northeastern part of Nobeoka city, Miyazaki Prefecture, Japan, 

Bulletin of the Faculty of Science of Kagoshima University, 17, 67-88. 

Raimbourg, H., T., Shibata, A., Yamaguchi, H., Yamaguchi and G., Kimura (2009) Horizontal 

shortening versus vertical loading in accretionary prisms. Geochem., Geophys., Geosyst. 10, 

Q04007. 



 30 

Renard, F., A, Park, P. Ortoleva, and J.P., Gratier (1999) An integrated model for transitional 

pressure solution in sandstones. Tectonophysics, 312, 97-115. 

Reynolds, R.C. (1985) NEWMOD: A computer program for the calculation of one-dimensional 

diffraction patterns of mixed layered clay minerals: Hanover, New Hampsher, R.C. 

Reynolds. 

Reynolds, R.C. (1988) Mixed-layer chlorite minerals. Pp 601-629 in: Hydrous phyllosilicatres 

(S.W. Bailey eds.) Reviews in Mineralogy, 19. Mineralogical Society of America, 

Washington, DC. 

Sakaguchi, A. (1999) Thermal structure and paleo-heat flow in the Shimanto accretionary prism, 

Southwest Japan. Island Arc, 8, 359-372. 

Sassi, F.P., and A., Scolari (1974) The b0 value of the potassium white micas as a barometric 

indicator in low-grade metamorphism of pelitic schists. Contribution to Mineralogy and 

Petrology, 45, 143-152. 

Schmidt, D., and K.J.T., Livi (1999) HRTEM and SAED investigations of polytypism, stacking 

disorder, crystal growth, and vacancies in chlorites from subgreenschist facies outcrops. Am. 

Mineral., 84, 160-170. 

Shaw, D.M. (1954) Trace elements in pelitic rocks. Part 1: Variations during metamorphism: 

Geol. Soc.Am. Bull., 65, 1151-1166. 

Spinelli, G.A. and Saffer, D.M. (2004) Along-strike variations in underthrust sediment 

dewatering on the Nicoya margin, Costa Rica related to the updip limit of seismicity. 

Geophys. Res. Lett., 31, L04613. 

Sweeney, J.J. and Burnham, A.K. (1990) Evaluation of a simple-model of vitrinite reflectance 



 31 

based on chemical-kinetics. AAPG Bull., 74, 1559-1570. 

Taira, A., I., Hill, J. Firth, U.Berner, W. Bruckmann, T. Byrne, T., Chabernaud, A., Fisher, J.P., 

Foucher, T., Gamo, J., Gieskes, R., Hyndman, D., Karig, M. Kastner, Y., Kato, S., Lallemand, 

R., Lu, A., Maltman, G., Moore, K., Moran, G., Olaffson, W., Owen, K., Pickering, F., Siena, 

E., Taylor, M., Underwood, C., Wilkinson, M., Y., Yamano, and J., Zhang (1992) Sediment 

deformation and hydrology of the Nankai Trough accretionary prism: synthesis of shipboard 

results of ODP Leg 131. Earth Planet. Sci. Lett., 109, 431-450. 

Toriumi, M., and J., Teruya (1988) Tectono-Metamorphism of the Shimanto Belt. Modern 

Geology, 12, 303-324. 

Underwood, M.B., M.M., Laughland and S.M. Kang (1993) A comparison among organic and 

inorganic indicators of diagenesis and low-temperature metamorphism, Tertiary Shimanto 

Belt, Shikoku, Japan. In Underwood, M.B., ed., Thermal Evolution of the Tertiary Shimanto 

Belt, Southwest Japan: An Example of Ridge-Trench interaction. Geological Society of 

America Special Paper 273, Boulder, Colorado. 

Van Cappellen, E., and J.C., Doukhan (1994) Quantitative transmission X-ray microanalysis of 

ionic compounds. Ultramicroscopy, 53, 343-349. 

Van de Kamp, P.C. (2008) Smectite-illite-muscovite transformations, quartz dissolution, and 

silica release in shales. Clays Clay Miner., 56, 66-81. 

Van der Pluijm, B.A., Lee, J.H., and D.R., Peacor (1988) Analytical electron microscopy and the 

problem of potassium diffusion. Clays Clay Miner., 36, 498-504. 

Velde, B. (1973) Phase equilibria studies in the system MgO-Al2O3-SiO2-H2O: chlorite and 

associated minerals. Mineralogical Magazine, 39, 297-312. 



 32 

Vidal, O., and T., Parra (2000) Exhumation paths of high-pressure metapelites obtained from 

local equiribria for chlorite-phengite assemblages. Geological Journal, 35, 139-161. 

Wang, K, and Y., Hu (2006) Accretionary prism in subduction earthquake cycles: The theory of 

dynamic Coulomb wedge. Journal of Geophysical Research, 111, B06410, 

doi:10.1029/2005JB004094. 

Ward, C.R., and F., Gómez-Fernández (2003) Quantitative mineralogical analysis of Spanish 

slates using the Rietveld method and X-ray powder diffraction data. European Journal of 

Mineralogy, 15, 1051-1062. 

Warr, L.N., and A.H.N., Rice (1994) Interlaboratory standardization and calibration of clay 

mineral crystallinity and crystallite size data. J. Metamorphic Geol. 12, 141-152. 

Watanabe, T., D., Epp, S., Uyeda, M., Langseth, and M., Yasui (1970) Heat flow in the 

Philippine Sea. Tectonophysics, 10, 205-224, doi: 10.1016/0040-1951(70)90107-1. 

Wintsch, R.P., C.M., Kvale, and H.J., Kish (1991) Open-system, constant-volume development 

of slaty cleavage, and strain induced replacement reactions in the Martinsburg Formation, 

Leigh Gap, Pennsylvania. Geol. Soc. Am. Bull., 103, 916-927. 

Wright, T.O. and L.B., Platt (1982) Pressure dissolution and cleavage in the Martinsburg Shale. 

American Journal of Science, 282, 122-135. 

Xu, H., and D.R., Veblen (1996) Interstratification and other reaction microstructures in the 

chlorite-berthierine series. Contribution to Mineralogy and Petrology, 124, 291-301. 

Yang, X.S. (2000) Pressure solution in sedimentary basins: effect of temperature gradient. Earth 

Planet. Sci. Lett., 176, 233-243. 

Yamano, M., S., Honda, and S., Uyeda (1984) Nankai Tourgh: A hot trench? Marine Geophysical 



 33 

Research, 6, 187-203. 

Yamano, M., M. Kinoshita, S. Goto, and O., Matsubayashi (2003) Extremely high heat flow 

anomaly in the middle part of the Nankai Trough. Physics and Chemistry of the Earth, 28, 

487-497. 



 34 

 

Figure captions 

Table 1. Crystal-chemical parameters and quantitative rock compositions determined by the 

program RockJock 

Table 2. Chemical compositions of micas normalized to O10(OH)2 

Table 3. Chemical compositions of chlorite normalized to O10(OH)8 

Fig. 1. Geological map of the Kitagawa unit in the northern Shimanto Belt, Kyushu, Japan. The 

gray level (from light to dark) assigned to the Kitagawa unit corresponds to the intensity of 

deformation (disruption of bedding and the development of a metamorphic foliation). 

Fig. 2. Microstructural evolution from the incipient development of a horizontal foliation (a, b, 

and b’) to intensely deformed domains (c and c’). Cleavage planes are defined by networks 

of chlorite and mica aligned parallel to the foliation (c, c’). The pairs of images (b–b’ and 

c–c’) show the same site under plane- and cross-polarized light, respectively. 

Fig. 3. Typical XRD patterns for oriented preparations of the <2 μm fraction in the EG state. 

Chl=chlorite. 

Fig. 4. Typical XRD patterns for random preparations of the <2 μm fraction. Black arrows 

indicate the 112 and 025 peaks for the 1M and 2M1 polytypes, respectively. 

Fig. 5. Evolution of the 1M-to-2M1 ratio of micas (1M/(1M + 2M1)) (a), chlorite/mica (b), and 

total clay content (micas + chlorite) as a function of metamorphic deformation. The weight 

percent amount of each constituent was determined by RockJock (Eberl, 2003). 

Fig. 6. (a) TEM image of a mica packet in an NM sample containing pervasive defect structures. 

White arrows indicate the sites of layer terminations. (b) Rotationally filtered high-resolution 
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TEM (HRTEM) image of a thick mica packet in an NM sample, showing a periodic 

two-layer ED pattern (inset). Pairs of layers marked by black arrows are arranged in the 1M 

stacking manner, within areas of 2M1 stacking. (c) Thick, well-defined packets (>100 nm) of 

mica in an StM sample, showing a periodic two-layer ED pattern (inset). 

Fig. 7. (a) Thick packet of chlorite in an StM sample. (b) Lattice fringe image of a packet 

dominated by 7 Å berthierine (white brackets). The black bracket shows a chlorite packet; 

arrows indicate isolated chlorite layers intergrown with berthierine packets. (c) Rotationally 

filtered HRTEM image of a chlorite packet containing 7 Å berthierine layers (white arrows); 

a magnified image is shown in (d). TOT = tetrahedral–octahedral–tetrahedral 2:1 unit layer. 

B = brucite-like interlayer sheet. Tetrahedral inversion (white bracket) causes a layer 

transition from berthierine (top) to chlorite (bottom). 

Fig. 8. Chemical compositions of micas plotted as a function of Si. (a) Interlayer cations, total 

(Na + K). (b) Mg + Fe. (c) Fe/(Mg + Fe) ratio. Data are normalized to O10(OH)2. 

Fig. 9. Atomic ratios of Al–Fe–Mg in chlorite. Also shown are data obtained by EMPA 

(Raimbourg et al., 2009).  
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Figure 3 
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Figure 4 
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Figure 7 
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Figure 8 

 

Figure 9 

13_06 14_04 HN18 HN20 HN23 HN24 avg. 16_03 16_05 HN26 avg. 16_07 HN34 HN40 HN41 avg.

IC (Δ °) 0.208 0.410 0.191 0.243 0.245 0.345 0.274 0.238 0.228 0.294 0.253 n.d. 0.212 0.193 0.205 0.203

b  (Å) 9.032 9.020 9.033 9.028 9.029 9.022 9.027 9.008 9.023 9.022 9.018 n.d. 9.011 9.016 9.011 9.013

Chl(001)** - 0.371 0.256 0.248 0.251 0.359 0.282 0.262 0.235 0.297 0.265 n.d. 0.187 0.180 0.209 0.192

Quartz 46.2 30.2 37.4 63.0 58.0 30.2 44.2 48.2 35.9 30.8 38.3 37.7 38.0 38.5 56.3 42.6

Albite 19.7 22.1 20.0 19.2 24.8 14.7 20.1 15.5 25.9 22.1 21.2 23.7 22.3 22.5 15.5 21.0

Calcite 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.2

Pyrite 0.0 0.4 0.6 1.1 0.0 0.1 0.4 0.4 0.0 0.1 0.2 0.1 0.1 0.2 0.2 0.2

Mica 1M 8.2 27.1 7.9 5.3 7.8 24.3 13.4 2.7 7.7 9.5 6.6 2.3 2.2 1.8 1.4 1.9

Mica 2M 1 24.5 19.2 28.1 8.2 6.7 19.2 17.7 16.1 19.1 20.7 18.6 22.6 22.0 20.0 16.6 20.3

Chlorite 0.4 1.8 6.0 3.2 3.4 11.5 4.4 16.2 12.1 15.1 14.5 13.4 15.1 17.8 10.7 14.2

Total 99.0 100.8 100.0 100.0 100.6 100* 99.1 100.6 98.1 99.8 100.3 100.6 100.7

NM SlM StM

 

*Recalculated to be 100 % total. Calculated total by RockJock is 92.1 %. 

**Width of chlorite 001 peak at half height (˚2θ) 

n.d. = not determined 

 
 

Table 1 
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14_04 HN18 HN24 avg. 16_05 HN25 avg. HN34 HN40 avg.

n 33 17 20 70 17 16 33 17 7 25

Si 3.20 3.26 3.23 3.22 3.21 3.28 3.24 3.25 3.21 3.24
IVAl 1.66 1.60 1.64 1.64 1.49 1.63 1.56 1.66 1.72 1.68
VIAl 0.72 0.71 0.66 0.70 0.76 0.67 0.72 0.71 0.74 0.72

Fe 0.14 0.20 0.19 0.17 0.13 0.14 0.13 0.11 0.07 0.10

Mg 0.29 0.29 0.25 0.28 0.29 0.28 0.28 0.27 0.24 0.26

Ti 0.08 0.03 0.11 0.08 0.03 0.05 0.04 0.04 0.06 0.04

K 0.83 0.89 0.83 0.84 0.91 0.92 0.91 0.92 0.91 0.92

Na 0.07 0.05 0.42 0.06 0.05 0.05 0.05 0.05 0.04 0.05

∑inter 0.90 0.94 0.87 0.90 0.96 0.97 0.96 0.98 0.95 0.97

NM SlM StM

  

 

Table 2. 

 

SlM

16_05 16_07 HN34 avg.

n 5 17 7 24

Si 2.84 2.73 2.68 2.71
IVAl 1.53 1.53 1.55 1.54
VIAl 1.12 1.20 1.26 1.22

Fe 2.67 2.69 2.71 2.70

Mg 1.59 1.61 1.60 1.60

Ti 0.03 0.07 0.06 0.07

StM

  

 

Table 3. 


