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Abstract
Picross 3D is a popular single-player puzzle video game for the Nintendo DS. It is a 3D variant of
Nonogram, which is a popular pencil-and-paper puzzle. While Nonogram provides a rectangular
grid of squares that must be filled in to create a picture, Picross 3D presents a rectangular
parallelepiped (i.e., rectangular box) made of unit cubes, some of which must be removed to
construct an image in three dimensions. Each row or column has at most one integer on it, and
the integer indicates how many cubes in the corresponding 1D slice remain when the image is
complete. It is shown by Kusano et al. that Picross 3D is NP-complete. We in this paper show
that the fewest clues problem of Picross 3D is ΣP

2 -complete and that the counting version and
the another solution problem of Picross 3D are #P-complete and NP-complete, respectively.
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1 Introduction

Many pencil-and-paper puzzles have been shown to be NP-complete [7]. For example, Akari
(also known as Light-ups) [11], Number Place (also known as Sudoku) [13], Shakashaka [5]
are all known to be NP-complete. Different from this line of research, Demaine et al. [4]
recently introduced the fewest clues problem (FCP) framework for analyzing computational
complexity of designing “good” puzzles. The FCP is, given an instance to a puzzle, to
decide the minimum number of clues we must add in order to make the instance uniquely
solvable. It is of great interest for puzzle makers to know hardness of such a version since it
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2 The third author is supported by JSPS KAKENHI Grant Number JP17K00013.
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25:2 The Fewest Clues Problem of Picross 3D

is usually the case that they want to ensure a puzzle instance to have a unique solution. In
[4], along with the FCP versions of classical NP-complete problems such as 3-SAT, those of
the three common Nikoli puzzles (Akari, Number Place, and Shakashaka) are shown to be
ΣP

2 -complete. Here, ΣP
2 is the complexity class that lies on the second level of the polynomial

hierarchy and includes the class NP. Hence, ΣP
2 -complete problems are at least as hard as

NP-complete problems. See, e.g., [1] for more details.
We in this paper investigate computational complexity of the FCP of Picross 3D and show

that it is ΣP
2 -complete. Picross 3D is a video-game puzzle developed by HAL Laboratory,

published by Nintendo, and was first released in 2009. While 2-dimensional Picross (also
known as Nonogram) provides a rectangular grid of squares that must be filled in to create
a picture, Picross 3D presents a rectangular parallelepiped (i.e., rectangular box) made of
unit cubes, some of which must be removed to construct an image in three dimensions. Each
row or column has at most one integer on it, and the integer indicates how many cubes in
the corresponding 1D slice remain when the image is complete. If the integer is not circled
nor boxed, then the remaining cubes in the 1D slice must form a section (i.e., the cubes
must be consecutive). If the integer is circled, then the remaining cubes in the 1D slice must
be split up into two sections. If the integer is boxed, then the cubes must be split up into
three or more sections. If there are no numbers on a row or column, then there are no rules
concerning the number of cubes (or sections) to remain. An instance of Picross 3D is shown
in Figure 1(a), and its solution is given in 1(b).

As many other puzzles, Picross 3D is shown to be NP-complete via a reduction from
3-SAT [10]. To show the ΣP

2 -completeness of the FCP of Picross 3D, we reduce to it the
FCP of positive 1-in-3 SAT, which is known to be ΣP

2 -complete [4]3. We note that those
Nikoli puzzles were chosen in [4] because their NP-hardness reductions mostly preserve clue
structure and their FCP versions were shown ΣP

2 -complete by using the same reductions or
slightly modified ones. On the other hand, we cannot do the same for the FCP of Picross
3D using the NP-hardness reduction of [10]; we instead modify it to devise a parsimonious
reduction from positive 1-in-3 SAT to Picross 3D. Here, a reduction is called parsimonious if,
for each instance, there exists a one-to-one correspondence between the solution sets of the
original instance and the reduced one. Intuitively, since a parsimonious reduction preserves
the number of solutions, it helps to provide a reduction that preserves the number of clues.
Moreover, it follows from the above parsimonious reduction that (i) the counting version
of Picross 3D is #P-complete since so is the counting version of positive 1-in-3 SAT [2, 3]4,
and (ii) the another solution problem (ASP) of Picross 3D is NP-complete5 since so is ASP
positive 1-in-3 SAT [12, 13]. Here, ASP Picross 3D is, given an instance of Picross 3D and a
solution to it, to determine if there exists another solution to the instance.

We now discuss related work. Picross 3D can be seen as a variant of problems that
have been studied in the field of (3D) discrete tomography. Discrete tomography deals with
problems of determining shape of a discrete object from a set of projections. These problems
have applications in, e.g., physical chemistry, medicine, and data coding, and have strong
connections with combinatorics and geometry; see [8] for details. Especially, Picross 3D
without the consecutiveness conditions on solutions is a basic problem in discrete tomography
and intensively studied from an algorithmic point of view; the problem is known to be NP-,

3 More precisely, the FCP of 1-in-3 SAT is shown ΣP
2 -complete in [4]. However, the proof in [4] also shows

the ΣP
2 -completeness of the FCP of positive 1-in-3 SAT.

4 More precisely, the counting version of monotone 1-in-3 SAT (i.e., each clause has only positive literals
or only negative literals) is shown #P-complete in [2]. However, it is not difficult to modify the proof in
[2] to show the #P-completeness of the counting version of positive 1-in-3 SAT.

5 This fact was pointed out by a reviewer.
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(a) (b)

Figure 1 An instance of Picross 3D and its solution

ASP-, and #P-complete [9, 6]. Moreover, the 2D version of the problem, which corresponds
to Nonogram, can be solved in polynomial time [8]. We note that the reductions in [9, 6]
cannot be used to show our results.

2 Preliminaries

In this section, we first introduce a formal definition of the puzzle Picross 3D and then
introduce the fewest clues problems (FCPs) of Picross 3D and positive 1-in-3 SAT.

2.1 Picross 3D

In Picross 3D, we are given a rectangular parallelepiped of height h, width w, and depth d.
Each unit square in the front, side and top faces have at most one nonnegative integer that
indicates how many cubes the row or column should contain when the image is complete.
These integers are conveniently represented by three matrices: an h× w matrix F = (fi,j)
called the front constraint matrix, an h × d matrix S = (si,k) called the side constraint
matrix, and a d×w matrix T = (tj,k) called the top constraint matrix. Each element of these
matrices is either an integer, a circled integer (e.g., 1O), a boxed integer (e.g., 1 ), or ε. Here,
ε indicates that there is no constraint concerning the remaining cubes in the corresponding
row or column. We denote by I = (h, w, d, F, S, T ) an instance of Picross 3D.

For the sake of clarity, we index these matrices as follows.

F =


f1,1 f1,2 · · · f1,w

f2,1 f2,2 · · · f2,w

...
... . . . ...

fh,1 fh,2 · · · fh,w

 , S =


s1,1 s1,2 · · · s1,d

s2,1 s2,2 · · · s2,d

...
... . . . ...

sh,1 sh,2 · · · sh,d

 ,

T =


t1,d t2,d · · · tw,d

t1,d−1 t2,d−1 · · · tw,d−1
...

... . . . ...
t1,1 t2,1 · · · tw,1

 .
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25:4 The Fewest Clues Problem of Picross 3D

Note that j is the index of the columns and k is the index (from bottom to top) of the rows
of T = (tj,k).

A solution to an instance I = (h, w, d, F, S, T ) of Picross 3D is a three dimensional matrix
P = (pi,j,k) ∈ {0, 1}h×w×d that satisfies the following conditions: each integer (even if circled
or boxed) indicates the number of 1’s in the column or row where the integer is written.
Namely, we must have

∑d
k=1 pi,j,k = fi,j for each i and j,

∑w
j=1 pi,j,k = si,k for each i and k,

and
∑h

i=1 pi,j,k = tj,k for each j and k. Moreover, (i) if the integer is not circled nor boxed,
then all the 1’s in the row or column must be consecutive, (ii) if the integer is circled, then
the row or column must contain exactly two sections that consecutively consist of only 1’s,
and (iii) if the integer is boxed, then the row or column must contain more than two sections
that consecutively consist of only 1’s. We describe a solution to Picross 3D as a sequence of
matrices as follows.

P =




p1,1,1 p1,2,1 · · · p1,w,1
p2,1,1 p2,2,1 · · · p2,w,1
...

... . . . ...
ph,1,1 ph,2,1 · · · ph,w,1

 ,


p1,1,2 p1,2,2 · · · p1,w,2
p2,1,2 p2,2,2 · · · p2,w,2
...

... . . . ...
ph,1,2 ph,2,2 · · · ph,w,2

 , . . . ,


p1,1,d p1,2,d · · · p1,w,d

p2,1,d p2,2,d · · · p2,w,d

...
... . . . ...

ph,1,d ph,2,d · · · ph,w,d


 .

I Example 1. Let h = 5, w = 2, and d = 3, and define the constraint matrices as follows.

F =


ε ε

2 ε

ε 1
1 ε

0 2

 , S =


ε 1 2
ε ε 2
2 ε ε

ε 1 1
ε ε ε

 , T =

3O ε

2 2
2O 3

 .

Then, I = (h, w, d, F, S, T ) represents the instance given in Figure 1(a).
Let

P =




1 1
0 0
1 1
0 0
0 1

 ,


1 0
1 0
0 0
0 1
0 1

 ,


1 1
1 1
0 0
1 0
0 0


 .

Then P is the solution to I that is depicted in Figure 1(b).

2.2 Fewest Clues Problem
We here define the FCP of Picross 3D and positive 1-in-3 SAT. A positive CNF is a CNF
where every literal occurring in it is positive.

FCP Picross 3D Given an instance I of Picross 3D and an integer `, does there exists a
partial assignment of at most ` variables such that there exists a unique solution to I

extending the partial assignment?
FCP positive 1-in-3 SAT Given a positive 3-CNF ϕ and an integer `, does there exists a

partial assignment of at most ` variables such that there exists a unique solution to ϕ,
where every clause has exactly one true literal, extending the partial assignment?
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3 Parsimonious Reduction from positive 1-in-3 SAT to Picross 3D

In this section, we provide a parsimonious reduction from positive 1-in-3 SAT to Picross
3D. Recall that a reduction is parsimonious if, for each instance, there exists a one-to-one
correspondence between the solution sets of the original instance and the reduced one. The
reduction will be used to show the ΣP

2 -completeness of FCP Picross 3D in the next section.
We note that from the reduction it follows that the counting version and the another solution
problem (ASP) of Picross 3D are respectively #P-complete and NP-complete, since so are
these variants of positive 1-in-3 SAT [2, 3, 12, 13]. We also note that our reduction is similar
to the reduction from 3-SAT to Picross 3D in [10]; indeed, the variables of a given 3-CNF
are represented in the same way. However, the reduction in [10] is not parsimonious and
seems hard to be used for showing the ΣP

2 -completeness of FCP Picross 3D.
I Proposition 2. There exists a parsimonious reduction from positive 1-in-3 SAT to Picross
3D.

Proof. Let ϕ be an instance of positive 1-in-3 SAT, where ϕ =
∧m

j=1 Cj is a positive
3-CNF with n variables and m clauses, and Cj = (xj1 ∨ xj2 ∨ xj3) for j = 1, . . . , m.
Here, 1 ≤ j1, j2, j3 ≤ n and j`’s are distinct for j = 1, . . . , m. We construct an instance
Iϕ = (h, w, d, F, S, T ) of Picross 3D as follows.

We set h = 4, w = 2(m + n− 1) + 1, and d = 3n. Let a function div be defined as

div(i) =


i if i = 0, 1
iO if i = 2
i if i ≥ 3.

The front constraint matrix F , which is an h×w(= 4× (2m + 2n− 1)) matrix, is defined
as

(i)


f1,j = f4,j = f1,m+n+j = f4,m+n+j = div(n),
f2,j = 1,

f3,j = div(2),

for 1 ≤ j ≤ m, (ii) f1,j = f4,j = f1,m+n+j = f4,m+n+j = div(m + n − j) for m + 1 ≤ j ≤
m + n− 1, (iii) f2,j = f3,j = 0 for m + 1 ≤ j ≤ w, and (iv) f1,n+m = f4,n+m = 0. Namely,

F =

m︷ ︸︸ ︷ n−1︷ ︸︸ ︷
div(n) . . . div(n) div(n − 1) . . . div(1) 0

1 . . . 1 0 . . . 0 0
div(2) . . . div(2) 0 . . . 0 0
div(n) . . . div(n) div(n − 1) . . . div(1) 0

m︷ ︸︸ ︷ n−1︷ ︸︸ ︷
div(n) . . . div(n) div(n − 1) . . . div(1) 0 . . . 0 0 . . . 0

0 . . . 0 0 . . . 0
div(n) . . . div(n) div(n − 1) . . . div(1) .

The side constraint matrix S, which is an h× d(= 4× 3n) matrix, is defined as
s1,3k−2 = s4,3k−1 = m + n− k,

s2,3k−2 = s3,3k−1 = ε,

s1,3k = s2,3k = s3,3k = s4,3k = 0,
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25:6 The Fewest Clues Problem of Picross 3D

for 1 ≤ k ≤ n. Namely,

S =

3n︷ ︸︸ ︷
m + n− 1 m + n− 1 0 m + n− 2 m + n− 2 0 . . . m m 0 ε ε 0 ε ε 0 . . . ε ε 0

ε ε 0 ε ε 0 . . . ε ε 0
m + n− 1 m + n− 1 0 m + n− 2 m + n− 2 0 . . . m m 0 .

The top constraint matrix T , which is d×w(= 3n× (2m + 2n− 1)) matrix, is defined as
follows.

(i) tj,3k−2 =
{

2 if xk ∈ {xj1 , xj2 , xj3},
1 otherwise,

for 1 ≤ j ≤ m and 1 ≤ k ≤ n, (ii) tj,3k−2 = tj,3k−1 = 1 for m + 1 ≤ j ≤ m + n − k and
1 ≤ k ≤ n− 1, (iii) tj,3k−2 = tj,3k−1 = 1 for m + n + 1 ≤ j ≤ 2m + 2n− k and 1 ≤ k ≤ n− 1,
and (iv) tjk = 0 for the remaining entries. Hence,

T =



0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0




3n

1 . . . 1 0 0 . . . 0 0 1 . . . 1 0 0 . . . 0
1 or 2 . . . 1 or 2 0 0 . . . 0 0 1 . . . 1 0 0 . . . 0

0 . . . 0 0 0 . . . 0 0 0 . . . 0 0 0 . . . 0
1 . . . 1 1 0 . . . 0 0 1 . . . 1 1 0 . . . 0

1 or 2 . . . 1 or 2 1 0 . . . 0 0 1 . . . 1 1 0 . . . 0
...

... 0
...

...
0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0 0
1 . . . 1 1 . . . 1 0 0 1 . . . 1 1 . . . 1 0

1 or 2 . . . 1 or 2 1 . . . 1 0 0 1 . . . 1 1 . . . 1 0
0 . . . 0 0 . . . 0 0 0 0 . . . 0 0 . . . 0 0
1 . . . 1 1 . . . 1 1 0 1 . . . 1 1 . . . 1 1

1 or 2 . . . 1 or 2 1 . . . 1 1 0 1 . . . 1 1 . . . 1 1 .︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−1

︸ ︷︷ ︸
m

︸ ︷︷ ︸
n−1

I Example 3. For ϕ = (x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4), Iϕ is depicted as Figure 2(a), and its
solution is given in 2(b).

We now show that the above reduction is parsimonious. We first show several auxiliary
claims.

I Claim 3.1. Let P = (pi,j,k) be a solution to Iϕ. Then, for 1 ≤ k ≤ n, we have either

(i)



p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 0
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 0
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 0,



K. Kimura, T. Kamehashi, and T. Fujito 25:7

(a) (b)

Figure 2 The instance Iϕ of Picross 3D and its solution for ϕ = (x1 ∨ x3 ∨ x4)(x2 ∨ x3 ∨ x4)

or

(ii)



p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 1
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 1
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 1.

Proof. We show the claim by induction on k. Assume that k = 1. We first show that either
(pi,1,` = · · · = pi,m+n−1,` = 1 and pi,m+n+1,` = · · · = pi,2m+2n−1,` = 0) or (pi,1,` = · · · =
pi,m+n−1,` = 0 and pi,m+n+1,` = · · · = pi,2m+2n−1,` = 1) hold for (i, `) ∈ {1, 4} × {1, 2}. For
(i, `) = (1, 1), since s1,1 = m+n−1, we have to consecutively set p1,a,1 = · · · = p1,a+m+n−2,1 =
1 for some a ≥ 1. On the other hand, since f1,m+n = 0, we have p1,m+n,1 = 0. Therefore, we
must have either (p1,1,1 = · · · = p1,m+n−1,1 = 1 and p1,m+n+1,1 = · · · = p1,2m+2n−1,1 = 0) or
(p1,1,1 = · · · = p1,m+n−1,1 = 0 and p1,m+n+1,1 = · · · = p1,2m+2n−1,1 = 1). Similarly, for other
(i, `), from si,` = m + n− 1 and f1,m+n = 0, we have either (pi,1,` = · · · = pi,m+n−1,` = 1 and
pi,m+n+1,` = · · · = pi,2m+2n−1,` = 0) or (pi,1,` = · · · = pi,m+n−1,` = 0 and pi,m+n+1,` = · · · =
pi,2m+2n−1,` = 1). We next show that p1,m+n−1,1 + p1,m+n−1,2 = p4,m+n−1,1 + p4,m+n−1,2 =
p1,m+n−1,1 +p4,m+n−1,1 = 1 holds. From f1,m+n−1 = div(1) = 1, we have

∑3n
`=1 p1,m+n−1,` =

1. On the other hand, tm+n−1,` = 0 implies that p1,m+n−1,` = 0 for ` = 3, 4, . . . , 3n.
Therefore, we have p1,m+n−1,1 + p1,m+n−1,2 = 1. Similarly, from f4,m+n−1 = div(1) = 1 and
tm+n−1,` = 0 for ` = 3, 4, . . . , 3n, we obtain p4,m+n−1,1 + p4,m+n−1,2 = 1. Moreover, from
tm+n−1,1 = 1, we have

∑4
i=1 pi,m+n−1,1 = 1. On the other hand, fi,m+n−1 = 0 implies that

pi,m+n−1,1 = 0 for i = 1, 2. Therefore, we have p1,m+n−1,1 + p4,m+n−1,1 = 1. Combining the
above equations, we obtain the claim for k = 1.

For k ≥ 2, assume that the claim holds for 1, . . . , k − 1. The proof is similar to the
one for k = 1. We first show that either (pi,1,3k−3+` = · · · = pi,m+n−k,3k−3+` = 1 and
pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 0) or (pi,1,3k−3+` = · · · = pi,m+n−k,3k−3+` = 0
and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 1) hold for (i, `) ∈ {1, 4} × {1, 2}. For
(i, `) = (1, 1), since s1,3k−2 = m + n − k, we have to consecutively set p1,a,1 = · · · =
p1,a+m+n−k−1,1 = 1 for some a ≥ 1. On the other hand, since f1,m+n = 0, we have p1,m+n,1 =
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25:8 The Fewest Clues Problem of Picross 3D

0. Moreover, f1,m+n−a = div(a) implies that
∑3n

b=1 p1,m+n−a,b = a for a = 1, . . . , k − 1. On
the other hand, by the inductive hypothesis, we have p1,m+n−a,3b−2 + p1,m+n−a,3b−1 = 1
for a = 1, . . . , k − 1 and b = 1, . . . , a. Therefore, we obtain that p1,m+n−a,3k−2 = 0 for
a = 1, . . . , k − 1. These imply that either (p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1 and
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0) or (p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
and p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1) hold. Similarly, for other (i, `), from
si,` = m+n−k and f1,m+n−a = div(a) for a = 0, . . . , k−1, we have either (pi,1,3k−3+` = · · · =
pi,m+n−k,3k−3+` = 1 and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 0) or (pi,1,3k−3+` =
· · · = pi,m+n−k,` = 0 and pi,m+n+1,3k−3+` = · · · = pi,2m+2n−k,3k−3+` = 1). We next show
that p1,m+n−k,3k−2 + p1,m+n−k,3k−1 = p4,m+n−k,3k−2 + p4,m+n−k,3k−1 = p1,m+n−k,3k−2 +
p4,m+n−k,3k−2 = 1 holds. From f1,m+n−k = div(k), we have

∑3n
`=1 p1,m+n−k,` = k. By the

inductive hypothesis, we have p1,m+n−k,3`−2 +p1,m+n−k,3`−1 = 1 for ` = 1, . . . , k−1. We also
have p1,m+n−k,3` = 0 for ` = 1, . . . , k− 1, since tm+n−k,3` = 0 for ` = 1, . . . , k− 1. Hence, we
have

∑3n
`=3k−2 p1,m+n−k,` = 1. On the other hand, tm+n−k,` = 0 implies that p1,m+n−1,` = 0

for ` = 3k, 3k + 1, . . . , 3n. Therefore, we have p1,m+n−k,3k−2 + p1,m+n−k,3k−1 = 1. Similarly,
from f4,m+n−k = div(k) and tm+n−k,` = 0 for ` = 3, 6, . . . , 3k − 3 and ` = 3k, 3k + 1, . . . , 3n,
we obtain p4,m+n−k,3k−2 + p4,m+n−k,3k−1 = 1. Moreover, from tm+n−1,k = 1, we have∑4

i=1 pi,m+n−k,1 = 1. On the other hand, fi,m+n−k = 0 implies that pi,m+n−k,3k−2 = 0
for i = 1, 2. Therefore, we have p1,m+n−k,3k−2 + p4,m+n−k,3k−2 = 1. Combining the above
equations, we obtain the claim for k. This completes the proof. J

Intuitively, for 1 ≤ k ≤ n, xk = 1 if and only if (i) in Claim 3.1 holds. We also need the
following claim.

I Claim 3.2. Let P = (pi,j,k) be a solution to Iϕ. Then we have pi,j,3k = 0 for i = 1, 2, 3, 4,
j = 1, . . . , 2m + 2n − 1, and k = 1, . . . , n. Moreover, we have pi,j,k = 0 for i = 2, 3, j =
m + 1, . . . , 2m + 2n− 1, and k = 1, 2, . . . , 3n. Furthermore, we have pi,j,3k−2 = pi,j,3k−1 = 0
for i = 2, 3, k = 1, . . . , n, and j = m+n−k+1, . . . , m+n−1, 2m+2n−k+1, . . . , 2m+2n−1.

Proof. For j = 1, . . . , 2m + 2n + 1 and k = 1, . . . , n, we have tj,3k = 0, implying that
pi,j,3k = 0 holds for i = 1, 2, 3, 4.

For i = 2, 3 and j = m + 1, . . . , 2m + 2n + 1, we have fi,j = 0, implying that pi,j,k = 0
holds for k = 1, 2 . . . , 3n.

For k = 1, . . . , n and j = m+n−k +1, . . . , m+n−1, 2m+2n−k +1, . . . , 2m+2n−1, we
have tj,3k−2 = tj,3k−1 = 1 and p1,j,3k−2 + p4,j,3k−2 = p1,j,3k−1 + p4,j,3k−1 = 1 by Claim 3.1.
Therefore, we have pi,j,3k−2 = pi,j,3k−1 = 0 for i = 2, 3. J

The following claim indicates which variable is true in each clause.

I Claim 3.3. Let P = (pi,j,k) be a solution to Iϕ. Then, for j = 1, . . . , m and k = 1, . . . , n,
we have (i) in Claim 3.1 and tj,3k−2 = 2 if and only if p2,j,3k−2 = 1 holds.

Proof. Fix j ∈ {1, . . . , m} and k ∈ {1, . . . , n}. Assume that (i) in Claim 3.1 and tj,3k−2 = 2
hold. From Claim 3.1, we have p1,j,3k−2 = 1. Moreover, since tj,3k−2 = 2 implies that we
have to consecutively set pi,j,3k−2 = pi+1,j,3k−2 for some i ≥ 1, we have p2,j,3k−2 = 1.

Conversely, assume that p2,j,3k−2 = 1 holds. By Claim 3.1, we have either p1,j,3k−2 = 1
or p4,j,3k−2 = 1. Hence, we have

∑4
i=1 pi,j,3k−2 ≥ 2. Since tj,3k−2 = 1 or 2 by definition, it

follows that tj,3k−2 = 2. This implies that we have to consecutively set pi,j,3k−2 = pi+1,j,3k−2
for some i ≥ 1. Together with p2,j,3k−2 = 1 and either p1,j,3k−2 = 1 or p4,j,3k−2 = 1, we have
p1,j,3k−2 = 1. Hence, from Claim 3.1, we have (i) in Claim 3.1. This completes the proof. J
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Intuitively, for j = 1, . . . , m and k = 1, . . . , n, clause Cj contains xk and xk is the unique
variable that is true in Cj if and only if p2,j,3k−2 = 1 holds.

We now construct a bijection between the solution sets of ϕ and Iϕ. We first construct a
mapping from the solution set of ϕ to that of Iϕ. Let x be a solution to ϕ. Then define an
assignment P to Iϕ as follows. For 1 ≤ k ≤ n, if xk = 1 then set

p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 1
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 0
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 0
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 0,

(1)

and if xk = 0 then set

p1,1,3k−2 = · · · = p1,m+n−k,3k−2 = 0
p1,1,3k−1 = · · · = p1,m+n−k,3k−1 = 1
p4,1,3k−2 = · · · = p4,m+n−k,3k−2 = 1
p4,1,3k−1 = · · · = p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = · · · = p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = · · · = p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = · · · = p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = · · · = p4,2m+2n−k,3k−1 = 1.

(2)

For j = 1, . . . , m, if clause Cj contains xk and xk = 1, then set p2,j,3k−2 = 1 and p3,j,3k−2 = 0.

For j = 1, . . . , m, if clause Cj contains xk and xk = 0, then set p2,j,3k−2 = 0 and p3,j,3k−2 = 1.

For all the remaining pi,j,k, set pi,j,k = 0. We show that the assignment P constructed from
x as above is a solution to Iϕ. We show this by showing that each constraint is satisfied by
P .

We first examine the constraints for matrix F . For j = 1, . . . , m, we have
∑3n

k=1 p1,j,k = n

from (1) and (2). Therefore, the constraint f1,j = div(n) is satisfied for j = 1, . . . , m.
Similarly, the constraint f4,j = div(n) is satisfied for j = 1, . . . , m, since

∑3n
k=1 p4,j,k = n

holds. For j = 1, . . . , m, we have
∑3n

k=1 p2,j,k = 1 if and only if there exists exactly one xk in
Cj such that xk = 1, since xk = 1 implies that p2,j,3k−2 = 1. Because x is a solution to ϕ,
we have

∑3n
k=1 p2,j,k = 1 and the constraint f2,j = 1 is satisfied for j = 1, . . . , m. Similarly,

the constraint f3,j = 2 is satisfied for j = 1, . . . , m, since
∑3n

k=1 p3,j,k = 2 holds if and only if
there exist exactly two xk

′s in Cj such that xk = 0.
We then focus on the constraints for matrix S. For i = 1, 4 and k = 1, . . . , n, we have∑2m+2n−1

j=1 pi,j,3k−2 = m+n−k from (1) and (2). Therefore the constraint si,3k−2 = m+n−k

is satisfied for i = 1, 4 and k = 1, . . . , n. Similarly, the constraint si,3k−1 = m + n − k is
satisfied for i = 1, 4 and k = 1, . . . , n. Furthermore, since pi,j,3k = 0 for i = 1, 2, 3, 4,
j = 1, . . . , 2m + 2n− 1, and k = 1, . . . , n, the constraint si,3k = 0 is satisfied for i = 1, 2, 3, 4
and k = 1, . . . , n.

Finally, we examine the constraints for matrix T . Firstly, for j = 1, . . . , m and k = 1, . . . , n,
we have tj,3k−2 = 1 or 2 by definition. Assume first that tj,3k−2 = 1 holds. Then, by definition,
clause Cj does not contain variable xk. Hence, we have p2,j,3k−2 = p3,j,3k−2 = 0. Moreover,
from assignment (1) and (2), we have p1,j,3k−2 + p4,j,3k−2 = 1. Therefore, the constraint
tj,3k−2 = 1 is satisfied. Assume next that tj,3k−2 = 2 holds. Then, by definition, clause
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Cj contains variable xk. Hence, we have p2,j,3k−2 + p3,j,3k−2 = 1. Furthermore, we have
p1,j,3k−2 + p4,j,3k−2 = 1 from (1) and (2). Therefore,

∑4
i=1 pi,j,3k−2 = 2 holds. Moreover,

from Claim 3.3, we have p1,j,3k−2 = 1 if and only if p2,j,3k−2 = 1 holds. Hence, we must have
either (p1,j,3k−2 = 1 and p2,j,3k−2 = 1) or (p3,j,3k−2 = 1 and p4,j,3k−2 = 1). In either case,
we have two consecutive 1’s. Therefore, the constraint tj,3k−2 = 2 is satisfied. Secondly, for
j = 1, . . . , m and k = 1, . . . , n, we have tj,3k−1 = 1 by definition. Since p1,j,3k−1+p4,j,3k−1 = 1
by (1) and (2), and p1,j,3k−1 = p4,j,3k−1 = 0, the constraint tj,3k−1 = 1 is satisfied. Thirdly,
for j = m + 1, . . . , m + n − 1 and k = 1, . . . , n, we have tj,3k−2 = 1 if j ≤ m + n − k

and tj,3k−2 = 0 if j ≥ m + n − k + 1 by definition. If j ≤ m + n − k, then we have
p1,j,3k−2 + p1,j,3k−2 = 1 from (1) and (2), and p2,j,3k−1 = p3,j,3k−1 = 0. Thus, we have∑4

i=1 pi,j,3k−2 = 1 and the constraint tj,3k−2 = 1 is satisfied. If j ≥ m + n − k + 1, then
we have pi,j,3k−2 = 0 for i = 1, 2, 3, 4. Thus, we have

∑4
i=1 pi,j,3k−2 = 0 and the constraint

tj,3k−2 = 0 is satisfied. Similarly, for j = m+1, . . . , m+n−1 and k = 1, . . . , n, the constraint
tj,3k−1 = 0 is satisfied. Fourthly, for j = 1, . . . , 2m + 2n − 1 and k = 1, . . . , n, we have
tj,3k = 0 by definition. Since pi,j,3k = 0 holds for i = 1, 2, 3, 4, the constraint tj,3k = 0 is
satisfied. Finally, for j = m + n and k = 1, 2 . . . , 3n, we have tj,k = 0 by definition. Since
pi,j,k = 0 holds for i = 1, 2, 3, 4, the constraint tj,k = 0 is satisfied.

We next show that if Iϕ has a solution, then ϕ has a solution. To show this, we construct
a solution x to ϕ from a solution P to Iϕ as follows. Note that, for each k = 1, . . . , n, we have
either (i) or (ii) in Claim 3.1, since P is a solution to Iϕ. For each k, set xk = 1 if (i) holds and
xk = 0 if (ii) holds. We show that x defined as above is a solution to ϕ. It suffices to show that
for each j = 1, . . . , m, clause Cj contains exactly one xk that is set to 1. Fix j ∈ {1, . . . , m}.
From f2,j = 1, we have

∑3n
k=1 p2,j,k = 1. Moreover, from tj,3k = 0, we have p3,j,3k−3 = 0 for

k = 1, . . . , n. Furthermore, from tj,3k−1 = 1 and p1,j,3k−1 + p4,j,3k−1 = 1 by Claim 3.1, we
have p2,j,3k−1 = 0 for k = 1, . . . , n. Therefore, we have

∑n
k=1 p2,j,3k−2 = 1. From Claim 3.3,

p2,j,3k−2 = 1 holds if and only if p1,1,3k−2 = 1 and tj,3k−2 = 2 holds. Therefore, together
with

∑n
k=1 p2,j,3k−2 = 1, there exists exactly one k such that p1,1,3k−2 = 1 and tj,3k−2 = 2

holds. By definition, we have tj,3k−2 = 2 if and only if Cj contains xk, and p1,1,3k−2 = 1 if
and only if xk = 1. Therefore, Cj contains exactly one xk that is set to 1. Hence, x is a
solution to ϕ.

We finally show that the above reduction is parsimonious. To show this, we show that
the mappings between the solution sets of ϕ and Iϕ defined above are inverse to each other.
Let x be a solution to ϕ and let P be the solution of Iϕ corresponding to x. Moreover, let x′

be the solution constructed from P . We show that x = x′ holds. Observe first that xk = 1 if
and only if p1,1,3k−2 = 1 from (1) and (2) for k = 1, . . . , n. Furthermore, p1,1,3k−2 = 1 if and
only if x′k = 1 from Claim 3.1 for k = 1, . . . , n. Hence, xk = x′k for k = 1, . . . , n and thus
x = x′.

Conversely, let P be a solution to Iϕ and let x be the solution to ϕ constructed from P .
Moreover, let P ′ be the solution constructed from x. We show that P = P ′ holds. Firstly,
for k = 1, . . . , n, P satisfies (i) in Claim 3.1 if and only if xk = 1 holds. Furthermore, xk = 1
holds if and only if P ′ satisfies (i) in Claim 3.1 for k = 1, . . . , n. Hence, P and P ′ coincide
in the indices appearing in Claim 3.1 for k = 1, . . . , n. Secondly, from tj,3k−1 = 1 and
p1,k,3k−1 + p4,k,3k−1 = p′1,k,3k−1 + p′4,k,3k−1 = 1 for j = 1, . . . , m and k = 1, . . . , n, we have
p2,k,3k−1 = p3,k,3k−1 = p′2,k,3k−1 = p′3,k,3k−1 = 0 for j = 1, . . . , m and k = 1, . . . , n. Thirdly,
from the proof of Claim 3.1, we have pi,j,3k−2 = pi,j,3k−1 = p′i,j,3k−2 = p′i,j,3k−1 = 0 for
i = 1, 4, k = 2, . . . , n, and j = m + n − k + 1, . . . , 2m + 2n + 1. Fourthly, from Claim 3.2
we have pi,j,3k = p′i,j,3k = 0 for i = 1, 2, 3, 4, j = 1, . . . , 2m + 2n + 1, and k = 1, . . . , n, and
pi,j,k = p′i,j,k = 0 for i = 2, 3, j = m + 1, . . . , 2m + 2n + 1, and k = 1, 2, . . . , 3n. Finally,
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from Claim 3.3, we have p1,1,3k−2 = 1 and tj,3k−2 = 2 if and only if p2,j,3k−2 = 1 holds for
j = 1, . . . , m and k = 1, . . . , n. Since p1,1,3k−2 = p′1,1,3k−2 holds from the above argument,
we have p2,j,3k−2 = p′2,j,3k−2 for j = 1, . . . , m and k = 1, . . . , n. Hence, P = P ′ holds. This
completes the proof. J

I Corollary 4. The counting version of Picross 3D is #P-complete and ASP Picross 3D is
NP-complete.

Proof. The former follows from the #P-completeness of the counting version of positive
1-in-3 SAT [2, 3] and Proposition 2. The latter follows from the NP-completeness of ASP
positive 1-in-3 SAT [12, 13] and Proposition 2. J

4 ΣP
2 -completeness of FCP Picross 3D

In this section, we show the following theorem using the reduction in the previous section.

I Theorem 5. FCP Picross 3D is ΣP
2 -complete.

Proof. Since Picross 3D is in NP, FCP Picross 3D is in ΣP
2 [4]. We hence show that FCP

Picross 3D is ΣP
2 -hard in the following.

Let (ϕ, `) be an instance of FCP positive 1-in-3 SAT. We show that (ϕ, `) is a yes instance
if and only if (Iϕ, `) is a yes instance, where Iϕ is defined in the proof of Proposition 2.

We first show that if (ϕ, `) is a yes instance, then (Iϕ, `) is a yes instance. For simplicity,
we identify a partial assignment with a set of single-variable assignments corresponding to
it in the following. Let {xk = εk | k ∈ K} be a clue that makes ϕ uniquely solvable, where
K ⊆ {1, . . . , n}, |K| ≤ `, and εk is either 0 or 1 for k ∈ K. We claim that {p1,1,3k−2 = εk |
k ∈ K} is a clue that makes Iϕ uniquely solvable. In fact, since {xk = εk | k ∈ K} can be
extended to a solution of ϕ, {p1,1,3k−2 = εk | k ∈ K} can also be extended to a solution to
Iϕ. Moreover, if there exist two solutions extending {p1,1,3k−2 = εk | k ∈ K} in Iϕ, then
there must be two solutions to ϕ corresponding to these solutions since the reduction is
parsimonious. These two solutions to ϕ coincide in the indices in K from the argument in
the proof of Proposition 2. This contradicts that {xk = εk | k ∈ K} is a clue that makes
ϕ uniquely solvable. Therefore, {p1,1,3k−2 = εk | k ∈ K} is a clue that makes Iϕ uniquely
solvable. Since |{p1,1,3k−2 = εk | k ∈ K}| ≤ `, we have that (Iϕ, `) is a yes instance.

We next show that if (Iϕ, `) is a yes instance, then (ϕ, `) is a yes instance. Let cpic =
{piv,jv,kv

= εv | v ∈ V } be a clue that makes Iϕ uniquely solvable, where |V | ≤ `, (iv, jv, kv) ∈
{1, . . . , h}×{1, . . . , w}×{1, . . . , d} for v ∈ V , and εv is either 0 or 1 for v ∈ V . We construct
a clue csat of ϕ as follows. Set csat = ∅. For k = 1, . . . , n, add xk = 1 to csat if cpic contains
at least one of the following assignments:

p1,1,3k−2 = 1, . . . , p1,m+n−k,3k−2 = 1
p1,1,3k−1 = 0, . . . , p1,m+n−k,3k−1 = 0
p4,1,3k−2 = 0, . . . , p4,m+n−k,3k−2 = 0
p4,1,3k−1 = 1, . . . , p4,m+n−k,3k−1 = 1
p1,m+n+1,3k−2 = 0, . . . , p1,2m+2n−k,3k−2 = 0
p1,m+n+1,3k−1 = 1, . . . , p1,2m+2n−k,3k−1 = 1
p4,m+n+1,3k−2 = 1, . . . , p4,2m+2n−k,3k−2 = 1
p4,m+n+1,3k−1 = 0, . . . , p4,2m+2n−k,3k−1 = 0.

(3)
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Moreover, for k = 1, . . . , n, add xk = 0 to csat if cpic contains at least one of the following
assignments:

p1,1,3k−2 = 0, . . . , p1,m+n−k,3k−2 = 0
p1,1,3k−1 = 1, . . . , p1,m+n−k,3k−1 = 1
p4,1,3k−2 = 1, . . . , p4,m+n−k,3k−2 = 1
p4,1,3k−1 = 0, . . . , p4,m+n−k,3k−1 = 0
p1,m+n+1,3k−2 = 1, . . . , p1,2m+2n−k,3k−2 = 1
p1,m+n+1,3k−1 = 0, . . . , p1,2m+2n−k,3k−1 = 0
p4,m+n+1,3k−2 = 0, . . . , p4,2m+2n−k,3k−2 = 0
p4,m+n+1,3k−1 = 1, . . . , p4,2m+2n−k,3k−1 = 1.

(4)

Furthermore, for k = 1, . . . , n, add xk = 1 to csat if tj,3k−2 = 2 and cpic contains at least one
of the following assignments:

p2,1,3k−2 = 1, p2,2,3k−2 = 1, . . . , p2,m,3k−2 = 1,

p3,1,3k−2 = 0, p3,2,3k−2 = 0, . . . , p3,m,3k−2 = 0.
(5)

Finally, for k = 1, . . . , n, add xk = 0 to csat if tj,3k−2 = 2 and cpic contains at least one of
the following assignments:

p2,1,3k−2 = 0, p2,2,3k−2 = 0, . . . , p2,m,3k−2 = 0,

p3,1,3k−2 = 1, p3,2,3k−2 = 1, . . . , p3,m,3k−2 = 1.
(6)

Then clearly |csat| ≤ ` holds. We show that csat is a clue that makes ϕ uniquely solvable.
To show this, we construct a clue c′pic to Iϕ from csat as follows. Set c′pic = ∅. Firstly, for
k = 1, . . . , n, if xk = 1 is in csat, then add to c′pic all the assignments in (3). Secondly,
for k = 1, . . . , n, if xk = 0 is in csat, then add to c′pic all the assignments in (4). Thirdly,
for k = 1, . . . , n, if xk = 1 is in csat and tj,3k−2 = 2, then add to c′pic all the assignments
in (5). Fourthly, for k = 1, . . . , n, if xk = 0 is in csat and tj,3k−2 = 2, then add to c′pic all
the assignments in (6). Finally, as in Claim 3.2, add pi,j,k = 0 to c′pic if pi,j,k = 0 holds
for any solution to Iϕ. Then clearly cpic ⊆ c′pic holds. Since cpic determines the solution
uniquely, so does c′pic. Moreover, for any solution x to ϕ extending csat, the solution P ′ to Iϕ

corresponding to x contains c′pic, i.e., c′pic ⊆ P ′ holds. Hence, P ′ is uniquely determined, and
so is x from Proposition 2. Therefore, csat is a clue that makes ϕ uniquely solvable. This
completes the proof. J

5 Conclusion

We in this paper show that FCP Picross 3D is ΣP
2 -complete. To show the result, we provide

a parsimonious reduction from positive 1-in-3 SAT, where the FCP of it is known to be
ΣP

2 -complete [4]. From the reduction, we also show that the counting version of Picross 3D
is #P-complete and ASP Picross 3D is NP-complete.
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