41 research outputs found

    Characterisation of bacteria from the cultures of a Chlorella strain isolated from textile wastewater and their growth enhancing effects on the axenic cultures of Chlorella vulgaris in low nutrient media

    Get PDF
    There is increasing interest in the use of microalgae grown on wastewater to provide useful metabolites. Several bacteria have been shown to affect the growth rate and quality of the algae, but it is not clear if this is specific to a particular group of bacteria or if nutrient conditions can also influence this interaction. The bacterial community associated with a freshwater Chlorella sp. isolated from open pond textile factory wastewater was characterised and a diverse group of bacteria isolated. We provide evidence that nutrient concentrations affect bacterial community composition. When grown in BG11 medium, the community was dominated by Pseudomonas sp., but when grown in Chu 10 medium (which contains lower nitrogen and phosphorus), the relative abundance of a Brevundimonas spp. increased. Several of the bacteria isolated were able to influence the growth of an axenic Chlorella vulgaris culture. The Pseudomonas sp. had a negative effect in all media tested whereas several isolates enhanced C. vulgaris growth, but only in Chu 10 medium. This supports the theory that bacterial stimulation of algal growth is not limited to species-specific interactions but is influenced by environmental conditions. In low nutrient conditions, Chlorella sp. may be increasingly dependent on bacteria for growth

    Coccolithoviruses: A review of cross‐kingdom genomic thievery and metabolic thuggery

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordCoccolithoviruses (Phycodnaviridae) infect and lyse the most ubiquitous and successful coccolithophorid in modern oceans, Emiliania huxleyi. So far, the genomes of 13 of these giant lytic viruses (i.e., Emiliania huxleyi viruses—EhVs) have been sequenced, assembled, and annotated. Here, we performed an in‐depth comparison of their genomes to try and contextualize the ecological and evolutionary traits of these viruses. The genomes of these EhVs have from 444 to 548 coding sequences (CDSs). Presence/absence analysis of CDSs identified putative genes with particular ecological significance, namely sialidase, phosphate permease, and sphingolipid biosynthesis. The viruses clustered into distinct clades, based on their DNA polymerase gene as well as full genome comparisons. We discuss the use of such clustering and suggest that a gene‐by‐gene investigation approach may be more useful when the goal is to reveal differences related to functionally important genes. A multi domain “Best BLAST hit” analysis revealed that 84% of the EhV genes have closer similarities to the domain Eukarya. However, 16% of the EhV CDSs were very similar to bacterial genes, contributing to the idea that a significant portion of the gene flow in the planktonic world inter‐crosses the domains of life.This work was funded by the NERC Oceans 2025 program, Plymouth Marine Laboratory’s Research Program, and a NERC PhD grant awarded to J.I.N. supervised by M.J.A. and S.A.K. at Plymouth Marine Laboratory

    A substantial fraction of phytoplankton-derived DON is resistant to degradation by a metabolically versatile, widely distributed marine bacterium

    Get PDF
    The capacity of bacteria for degrading dissolved organic nitrogen (DON) and remineralising ammonium is of importance for marine ecosystems, as nitrogen availability frequently limits productivity. Here, we assess the capacity of a widely distributed and metabolically versatile marine bacterium to degrade phytoplankton-derived dissolved organic carbon (DOC) and nitrogen. To achieve this, we lysed exponentially growing diatoms and used the derived dissolved organic matter (DOM) to support an axenic culture of Alteromonas sp.. Bacterial biomass (as particulate carbon and nitrogen) was monitored for 70 days while growth dynamics (cell count), DOM (DOC, DON) and dissolved nutrient concentrations were monitored for up to 208 days. Bacterial biomass increased rapidly within the first 7 days prior to a period of growth/death cycles potentially linked to rapid nutrient recycling. We found that ≈75% of the initial DOC and ≈35% of the initial DON were consumed by bacteria within 40 and 4 days respectively, leaving a significant fraction of DOM resilient to degradation by this bacterial species. The different rates and extents to which DOC and DON were accessed resulted in changes in DOM stoichiometry and the iterative relationship between DOM quality and bacterial growth over time influenced bacterial cell C:N molar ratio. C:N values increased to 10 during the growth phase before decreasing to values of ≈5, indicating a change from relative N-limitation/C-sufficiency to relative C-limitation/N-sufficiency. Consequently, despite its reported metabolic versatility, we demonstrate that Alteromonas sp. was unable to access all phytoplankton derived DOM and that a bacterial community is likely to be required. By making the relatively simple assumption that an experimentally derived fraction of DOM remains resilient to bacterial degradation, these experimental results were corroborated by numerical simulations using a previously published model describing the interaction between DOM and bacteria in marine systems, thus supporting our hypothesis

    Modelling the Effects of Traits and Abiotic Factors on Viral Lysis in Phytoplankton

    Get PDF
    A mechanistic system dynamics description is developed of the interactions between a single lytic-virus – phytoplankton-host couple. The model has state variables for virus, uninfected and infected host biomass, and describes virus and host allometry and physiology. The model, analogous to experimental laboratory virus-host systems but more amenable to hypothesis testing, enables us to explore the relative importance of some of the poorly understood factors suspected to impact plankton virus-host dynamics. Model behaviour is explored with respect to abiotic factors (light, mixed layer depth, nutrient and suspended particle loading), host traits (size, growth rate, motility) and virus traits (size, latent period and burst size including linkage to compromised host physiology, and decay rates). Simulations show that the optimal performance of a virus (i.e., optimal trait characterisation) is a function of many factors relating to the virus, its host, and the environment. In general, smaller viruses and smaller motile hosts give rise to more productive infection outcomes that result in rapid demise of the host and high post-infection virus abundance. However, the timing of the development of the interaction (relative abundance of virus to host at the start of rapid host population growth), overlain on the growth rate and physiological status of the host, was seen to be critical. Thus, for any one configuration of the model, the inoculum level of the virus (multiplicity of infection- MOI) displayed an optimum time-point between the infection developing too quickly, limiting biomass accumulation, or too late so that nutrient or light limitation compromised host physiology and hence the burst size. Importantly, the success of an infection depended also upon the suspended particle load which, if high enough, adsorbs so many viruses that the infection does not develop. We conclude that adding viruses to plankton ecosystem models in a realistic fashion is a complicated process due to the way that the individual and coupled virus-host processes interact with the environment

    “Boom‐and‐busted‐dynamics” of phytoplankton‐virus interactions explain the paradox of the plankton

    Get PDF
    Rapid virus proliferation can exert a powerful control on phytoplankton host populations, playing a significant role in marine biogeochemistry and ecology. We explore how marine lytic viruses impact phytoplankton succession, affecting host and nonhost populations. Using an in silico food web we conducted simulation experiments under a range of different abiotic and biotic conditions, exploring virus–host–grazer interactions and manipulating competition, allometry, motility and cyst cycles. Virus-host and predator–prey interactions, and interactions with competitors, generate bloom dynamics with a pronounced ‘boom-and-busted’ dynamic (BBeD) which leads to the suppression of otherwise potentially successful phytoplankton species. The BBeD is less pronounced at low nutrient loading through distancing of phytoplankton hosts, while high sediment loading and high nonhost biomass decrease the abundance of viruses through adsorption. Larger hosts are inherently more distanced, but motility increases virus attack, while cyst cycles promote spatial and temporal distancing. Virus control of phytoplankton bloom development appears more important than virus-induced termination of those blooms. This affects plankton succession – not only the growth of species infected by the virus, but also those that compete for the same resources and are collectively subjected to common grazer control. The role of viruses in structuring plankton communities via BBeDs can thus provide an explanation for the paradox of the plankton

    Modulation of Polar Lipid Profiles in Chlorella sp. in Response to Nutrient Limitation

    Get PDF
    We evaluate the effects of nutrient limitation on cellular composition of polar lipid classes/species in Chlorella sp. using modern polar lipidomic profiling methods (Liquid Chromatography-Tandem Mass Spectrometry; LC-MS/MS). Total polar lipid concentration was highest in nutrient-replete (HN) cultures with a significant reduction in monogalactosyldiacylglycerol (MGDG), phosphatidylglycerol (PG), phosphatidylcholine (PC) and phosphatidylethanolamine (PE) class concentrations for nutrient-deplete (LN) cultures. Moreover, reductions in the abundance of MGDG relative to total polar lipids versus an increase in the relative abundance of digalactosyldiacylglycerol (DGDG) were recorded in LN cultures. In HN cultures, polar lipid species composition remained relatively constant throughout culture with high degrees of unsaturation associated with acyl moieties. Conversely, in LN cultures lipid species composition shifted towards greater saturation of acyl moieties. Multivariate analyses revealed that changes in the abundance of a number of species contributed to the dissimilarity between LN and HN cultures but with dominant effects from certain species e.g. reduction in MGDG 34:7 (18:3/16:4). Results demonstrate that Chlorella sp. significantly alters its polar lipidome in response to nutrient limitation and this is discussed in terms of physiological significance and polar lipids production for applied microalgal production systems

    Dip in the gene pool: metagenomic survey of natural coccolithovirus communities

    Get PDF
    Despite the global oceanic distribution and recognised biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities

    Achieving temperature-size changes in a unicellular organism.

    Get PDF
    The temperature-size rule (TSR) is an intraspecific phenomenon describing the phenotypic plastic response of an organism size to the temperature: individuals reared at cooler temperatures mature to be larger adults than those reared at warmer temperatures. The TSR is ubiquitous, affecting >80% species including uni- and multicellular groups. How the TSR is established has received attention in multicellular organisms, but not in unicells. Further, conceptual models suggest the mechanism of size change to be different in these two groups. Here, we test these theories using the protist Cyclidium glaucoma. We measure cell sizes, along with population growth during temperature acclimation, to determine how and when the temperature-size changes are achieved. We show that mother and daughter sizes become temporarily decoupled from the ratio 2:1 during acclimation, but these return to their coupled state (where daughter cells are half the size of the mother cell) once acclimated. Thermal acclimation is rapid, being completed within approximately a single generation. Further, we examine the impact of increased temperatures on carrying capacity and total biomass, to investigate potential adaptive strategies of size change. We demonstrate no temperature effect on carrying capacity, but maximum supported biomass to decrease with increasing temperature
    corecore