61 research outputs found

    The gas-phase chemiionization reaction between samarium and oxygen atoms: a theoretical study

    Get PDF
    The Sm+O chemiionization reaction has been investigated theoretically using a method that allows for correlation and relativistic effects. Potential energy curves have been calculated for several electronic states of SmO and SmO+. Comparison with available spectroscopic and thermodynamic values for these species is reported and a mechanism for the chemiionization reaction Sm+O is proposed. The importance of spin-orbit coupling in the excited states of SmO, in allowing this chemiionization reaction to take place, has been revealed by these calculations. This paper shows the metal-plus-oxidant chemiionization reaction

    Ab Initio Potential Energy Surface by Modified Shepard Interpolation: Application to the CH3+H2→CH4+H Reaction

    Get PDF
    An ab initiopotential energy surface for the six-atom reactionCH3+H2→CH4+H was constructed, within C3v symmetry, by a modified Shepard interpolation method proposed recently by Collins et al. Selection of data points for the description of the potential energy surface was performed using both the Collins method and the dynamic reaction path (DRP) method. Although the DRP method is computationally more expensive, additional data points can be determined by just one simulation. Analyses of distributions of the data points, reaction probability, and errors in energy and energy gradients determined by the two different methods suggest a slight advantage for the DRP sampling in comparison with the iterative sampling

    Ab Initio Vibrational State Calculations with a Quartic Force Field: Applications to H2CO, C2H4, CH3OH, CH3CCH, and C6H6

    Get PDF
    For polyatomic molecules, n-mode coupling representations of the quartic force field (nMR-QFF) are presented, which include terms up to n normal coordinate couplings in a fourth-order polynomial potential energy function. The computational scheme to evaluate third-and fourth-order derivatives by finite differentiations of the energy is fully described. The code to generate the nMR-QFF has been implemented into GAMESS program package and interfaced with the vibrational self-consistent field (VSCF) and correlation corrected VSCF (cc-VSCF) methods. As a demonstration, fundamental frequencies have been calculated by the cc-VSCF method based on 2MR-QFF for formaldehyde, ethylene, methanol, propyne, and benzene. The applications show that 2MR-QFF is a highly accurate potential energy function, with errors of 1.0–1.9% relative to the experimental value in fundamental frequencies. This approach will help quantitative evaluations of vibrational energies of a general molecule with a reasonable computational cost

    Analytic Energy Gradients for Multiconfigurational Self-Consistent Field Second-Order Quasidegenerate Perturbation Theory (MC-QDPT)

    Get PDF
    An analytic energy gradient method for second-order quasidegenerate perturbation theory with multiconfigurational self-consistent field reference functions (MC-QDPT) is derived along the lines of the response function formalism (RFF). According to the RFF, the gradients are calculated without solving coupled perturbed equations. Instead, it is necessary to solve seven sets of linear equations in order to determine Lagrangian multipliers, corresponding to four sets of parameter constraining conditions and three sets of additional parameter defining conditions in the Lagrangian. Just one of these linear equations is a large scale linear equation; the others are reducible to just partial differentiations or simple equations solvable by straightforward subroutines
    • …
    corecore