6 research outputs found

    Human-Robot Planetary Exploration Teams

    Get PDF
    The EVA Robotic Assistant (ERA) project at NASA Johnson Space Center studies human-robot interaction and robotic assistance for future human planetary exploration. Over the past four years, the ERA project has been performing field tests with one or more four-wheeled robotic platforms and one or more space-suited humans. These tests have provided experience in how robots can assist humans, how robots and humans can communicate in remote environments, and what combination of humans and robots works best for different scenarios. The most efficient way to understand what tasks human explorers will actually perform, and how robots can best assist them, is to have human explorers and scientists go and explore in an outdoor, planetary-relevant environment, with robots to demonstrate what they are capable of, and roboticists to observe the results. It can be difficult to have a human expert itemize all the needed tasks required for exploration while sitting in a lab: humans do not always remember all the details, and experts in one arena may not even recognize that the lower level tasks they take for granted may be essential for a roboticist to know about. Field tests thus create conditions that more accurately reveal missing components and invalid assumptions, as well as allow tests and comparisons of new approaches and demonstrations of working systems. We have performed field tests in our local rock yard, in several locations in the Arizona desert, and in the Utah desert. We have tested multiple exploration scenarios, such as geological traverses, cable or solar panel deployments, and science instrument deployments. The configuration of our robot can be changed, based on what equipment is needed for a given scenario, and the sensor mast can even be placed on one of two robot bases, each with different motion capabilities. The software architecture of our robot is also designed to be as modular as possible, to allow for hardware and configuration changes. Two focus areas of our research are safety and crew time efficiency. For safety, our work involves enabling humans to reliably communicate with a robot while moving in the same workspace, and enabling robots to monitor and advise humans of potential problems. Voice, gesture, remote computer control, and enhanced robot intelligence are methods we are studying. For crew time efficiency, we are investigating the effects of assigning different roles to humans and robots in collaborative exploration scenarios

    Intelligence for Human-Assistant Planetary Surface Robots

    Get PDF
    The central premise in developing effective human-assistant planetary surface robots is that robotic intelligence is needed. The exact type, method, forms and/or quantity of intelligence is an open issue being explored on the ERA project, as well as others. In addition to field testing, theoretical research into this area can help provide answers on how to design future planetary robots. Many fundamental intelligence issues are discussed by Murphy [2], including (a) learning, (b) planning, (c) reasoning, (d) problem solving, (e) knowledge representation, and (f) computer vision (stereo tracking, gestures). The new "social interaction/emotional" form of intelligence that some consider critical to Human Robot Interaction (HRI) can also be addressed by human assistant planetary surface robots, as human operators feel more comfortable working with a robot when the robot is verbally (or even physically) interacting with them. Arkin [3] and Murphy are both proponents of the hybrid deliberative-reasoning/reactive-execution architecture as the best general architecture for fully realizing robot potential, and the robots discussed herein implement a design continuously progressing toward this hybrid philosophy. The remainder of this chapter will describe the challenges associated with robotic assistance to astronauts, our general research approach, the intelligence incorporated into our robots, and the results and lessons learned from over six years of testing human-assistant mobile robots in field settings relevant to planetary exploration. The chapter concludes with some key considerations for future work in this area

    Intelligence for human-assistant planetary surface robots

    No full text
    Robots will require intelligence to succeed in the uncertain and changing environment on lunar and planetary surfaces. Even with humans directly involved in controlling such robots, individual robotic intelligence is still needed. In fact, robotic intelligence may be even more necessary in human-robot collaborative work than for robots operating alone. In addition to knowledge o

    Optogenetic and pharmacological interventions link hypocretin neurons to impulsivity in mice

    No full text
    Optogenetic or pharmacological modulation of hypocretin neurons impacts mouse impulsivity in a Go/No-Go task, suggesting that these neurons play a key role in integrating salient stimuli and guiding responses to various environmental cues

    Neural and Hormonal Control of Sexual Behavior

    No full text
    corecore