142 research outputs found

    POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer

    Get PDF
    DNA arrays are valuable tools in molecular biology laboratories. Their rapid acceptance was aided by the release of plans for a pin-spotting microarrayer by researchers at Stanford. Inkjet microarraying is a flexible, complementary technique that allows the synthesis of arrays of any oligonucleotide sequences de novo. We describe here an open-source inkjet arrayer capable of rapidly producing sets of unique 9,800-feature arrays

    Stability of Single Particle Tracers for Differentiating Between Heavy- and Light-Duty Vehicle Emissions

    Get PDF
    To determine the size and chemical composition of particles derived from on-road vehicle emissions, individual particles were sampledcontinuously with an aerosol time-of-flight mass spectrometer (ATOFMS) at the Caldecott Tunnel in Northern California. In this tunnel, traffic is segregated, such that in theory only light duty vehicle emissions or a mix of heavy- (HDV) and light-duty vehicle (LDV) emissions can be sampled separately. Two studies were carried out, one in November 1997 anda secondin July 2000, time periods with average ambient temperatures of 10–15 and 26–32 1C, respectively, with the instrument operating at ambient outdoor temperatures. Analysis of the chemical composition of the particles sampled in these studies shows that sampling conditions can strongly impact the determination of suitable markers for identifying particles emitted from different vehicle types during ambient studies

    Biomarkers and Stimulation Algorithms for Adaptive Brain Stimulation

    Get PDF
    The goal of this review is to describe in what ways feedback or adaptive stimulation may be delivered and adjusted based on relevant biomarkers. Specific treatment mechanisms underlying therapeutic brain stimulation remain unclear, in spite of the demonstrated efficacy in a number of nervous system diseases. Brain stimulation appears to exert widespread influence over specific neural networks that are relevant to specific disease entities. In awake patients, activation or suppression of these neural networks can be assessed by either symptom alleviation (i.e., tremor, rigidity, seizures) or physiological criteria, which may be predictive of expected symptomatic treatment. Secondary verification of network activation through specific biomarkers that are linked to symptomatic disease improvement may be useful for several reasons. For example, these biomarkers could aid optimal intraoperative localization, possibly improve efficacy or efficiency (i.e., reduced power needs), and provide long-term adaptive automatic adjustment of stimulation parameters. Possible biomarkers for use in portable or implanted devices span from ongoing physiological brain activity, evoked local field potentials (LFPs), and intermittent pathological activity, to wearable devices, biochemical, blood flow, optical, or magnetic resonance imaging (MRI) changes, temperature changes, or optogenetic signals. First, however, potential biomarkers must be correlated directly with symptom or disease treatment and network activation. Although numerous biomarkers are under consideration for a variety of stimulation indications the feasibility of these approaches has yet to be fully determined. Particularly, there are critical questions whether the use of adaptive systems can improve efficacy over continuous stimulation, facilitate adjustment of stimulation interventions and improve our understanding of the role of abnormal network function in disease mechanisms

    Subsidizing Religious Participation through Groups: A Model of the “Megachurch” Strategy for Growth

    Get PDF
    Either despite or because of their non-traditional approach, megachurches have grown significantly in the United States since 1980. This paper models religious participation as an imperfect public good which, absent intervention, yields suboptimal participation by members from the church’s perspective. Megachurches address this problem in part by employing secular-based group activities to subsidize religious participation that then translates into an increase in the attendees’ religious investment. This strategy not only allows megachurches to attract and retain new members when many traditional churches are losing members but also results in higher levels of an individual’s religious capital. As a result, the megachurch may raise expectations of members’ levels of commitment and faith practices. Data from the FACT2000 survey provide evidence that megachurches employ groups more extensively than other churches, and this approach is consistent with a strategy to use groups to help subsidize individuals’ religious investment. Religious capital rises among members of megachurches relative to members of non-megachurches as a result of this strategy

    Exploring Alumni Stories Through Qualitative Research

    Get PDF
    This presentation describes a project designed to connect current psychology undergraduates with alumni from the same program. Purposive sampling was used to recruit diverse alumni following different career paths (i.e., graduate school or straight to work), representing alumni who identified as first generation, nontraditional, Latina/Latino or as a student of color. Semi-structured interviews were conducted to understand alumni career paths and gather information about decision-making, barriers, supports, and advice for current psychology majors. Interviews were audio-taped and are currently being transcribed. Some alumni agreed to participate in an “Alumni Profile,” which highlighted specific alumni by name, shared details of individual’s specific story, and were made publicly available. The current presentation will share the experiences of the undergraduate researchers exploring qualitative research, learning about career options available after graduation, and benefits for current students

    Effects of donor cause of death, ischemia time, inotrope exposure, troponin values, cardiopulmonary resuscitation, electrocardiographic and echocardiographic data on recipient outcomes: A review of the literature

    Full text link
    BackgroundHeart transplantation has become standard of care for pediatric patients with either end‐stage heart failure or inoperable congenital heart defects. Despite increasing surgical complexity and overall volume, however, annual transplant rates remain largely unchanged. Data demonstrating pediatric donor heart refusal rates of 50% suggest optimizing donor utilization is critical. This review evaluated the impact of donor characteristics surrounding the time of death on pediatric heart transplant recipient outcomes.MethodsAn extensive literature review was performed to identify articles focused on donor characteristics surrounding the time of death and their impact on pediatric heart transplant recipient outcomes.ResultsPotential pediatric heart transplant recipient institutions commonly receive data from seven different donor death‐related categories with which to determine organ acceptance: cause of death, need for CPR, serum troponin, inotrope exposure, projected donor ischemia time, electrocardiographic, and echocardiographic results. Although DITs up to 8 hours have been reported with comparable recipient outcomes, most data support minimizing this period to <4 hours. CVA as a cause of death may be associated with decreased recipient survival but is rare in the pediatric population. Otherwise, however, in the setting of an acceptable donor heart with a normal echocardiogram, none of the other data categories surrounding donor death negatively impact pediatric heart transplant recipient survival.ConclusionsEchocardiographic evaluation is the most important donor clinical information following declaration of brain death provided to potential recipient institutions. Considering its relative importance, every effort should be made to allow direct image visualization.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/1/petr13676.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154939/2/petr13676_am.pd

    The Application of Novel Research Technologies by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND) Consortium

    Get PDF
    The deep waters of the open ocean represent a major frontier in exploration and scientific understanding. However, modern technological and computational tools are making the deep ocean more accessible than ever before by facilitating increasingly sophisticated studies of deep ocean ecosystems. Here, we describe some of the cutting-edge technologies that have been employed by the Deep Pelagic Nekton Dynamics of the Gulf of Mexico (DEEPEND; www.deependconsortium.org) Consortium to study the biodiverse fauna and dynamic physical-chemical environment of the offshore Gulf of Mexico (GoM) from 0 to 1,500 m

    Genome of the house fly, <i>Musca domestica</i> L., a global vector of diseases with adaptations to a septic environment

    Get PDF
    Background: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions: This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies

    Exclusionary Amenities in Residential Communities

    Full text link

    Impacts of 1.5°C Global Warming on Natural and Human Systems

    Get PDF
    An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate povert
    • 

    corecore