134 research outputs found

    A Coalescent Sampler Successfully Detects Biologically Meaningful Population Structure Overlooked by F‐Statistics

    Get PDF
    Assessing the geographic structure of populations has relied heavily on Sewell Wright\u27s F‐statistics and their numerous analogues for many decades. However, it is well appreciated that, due to their nonlinear relationship with gene flow, F statistics frequently fail to reject the null model of panmixia in species with relatively high levels of gene flow and large population sizes. Coalescent genealogy samplers instead allow a model‐selection approach to the characterization of population structure, thereby providing the opportunity for stronger inference. Here, we validate the use of coalescent samplers in a high gene flow context using simulations of a stepping‐stone model. In an example case study, we then re‐analyze genetic datasets from 41 marine species sampled from throughout the Hawaiian archipelago using coalescent model selection. Due to the archipelago\u27s linear nature, it is expected that most species will conform to some sort of stepping‐stone model (leading to an expected pattern of isolation by distance), but F‐statistics have only supported this inference in ~10% of these datasets. Our simulation analysis shows that a coalescent sampler can make a correct inference of stepping‐stone gene flow in nearly 100% of cases where gene flow is ≤100 migrants per generation (equivalent to FST = 0.002), while F‐statistics had mixed results. Our re‐analysis of empirical datasets found that nearly 70% of datasets with an unambiguous result fit a stepping‐stone model with varying population sizes and rates of gene flow, although 37% of datasets yielded ambiguous results. Together, our results demonstrate that coalescent samplers hold great promise for detecting weak but meaningful population structure, and defining appropriate management units

    Evolving coral reef conservation with genetic information

    Get PDF
    Targeted conservation and management programs are crucial for mitigating anthropogenic threats to declining biodiversity. Although evolutionary processes underpin extant patterns of biodiversity, it is uncommon for resource managers to explicitly consider genetic data in conservation prioritization. Genetic information is inherently relevant to management because it describes genetic diversity, population connectedness, and evolutionary history; thereby typifying their behavioral traits, physiological climate tolerance, evolutionary potential, and dispersal ability. Incorporating genetic information into spatial conservation prioritization starts with reconciling the terminology and techniques used in genetics and conservation science. Genetic data vary widely in analyses and their interpretations can be challenging even for experienced geneticists. Therefore, identifying objectives, decision rules, and implementations in decision support tools specifically for management using genetic data is challenging. Here, we outline a framework for eight genetic system characteristics, their measurement, and how they could be incorporated in spatial conservation prioritization for two contrasting objectives: biodiversity preservation vs maintaining ecological function and sustainable use. We illustrate this framework with an example using data from Tridacna crocea (Lamarck, 1819) (boring giant clam) in the Coral Triangle. We find that many reefs highlighted as conservation priorities with genetic data based on genetic subregions, genetic diversity, genetic distinctness, and connectivity are not prioritized using standard practices. Moreover, different characteristics calculated from the same samples resulted in different spatial conservation priorities. Our results highlight that omitting genetic information from conservation decisions may fail to adequately represent processes regulating biodiversity, but that conservation objectives related to the choice of genetic system characteristics require careful consideration

    Knowledge sharing about deep-sea ecosystems to inform conservation and research decisions

    Get PDF
    The Marianas Trench Marine National Monument (MNM) currently extends policy-based protection to deep-sea ecosystems contained within it, but managers require better understanding of the current knowledge and knowledge gaps about these ecosystems to guide decision-making. To address this need, we present a case study of the Marianas Trench MNM using in-depth interviews to determine scientists’ (1) current understanding of anthropogenic drivers of change and system vulnerability in deep-sea ecosystems; and (2) perceptions of the least understood deep-sea ecosystems and processes in the Marianas Trench MNM, and which of these, if any, should be research priorities to fill knowledge gaps about these systems and the impacts from anthropogenic drivers of change. Interview respondents shared similar views on the current knowledge of deep-sea ecosystems and potential anthropogenic drivers of change in the Marianas Trench MNM. Respondents also identified trench and deep pelagic (bathyal, abyssal, and hadal zones) ecosystems as the least understood, and highlighted climate change, litter and waste, mining and fishing, and interactions between these drivers of change as critical knowledge gaps. To fill key knowledge gaps and inform conservation decision-making, respondents identified the need for monitoring networks and time-series data. Our approach demonstrates how in-depth interviews can be used to elicit knowledge to inform decision-making in data-limited situations

    Neuropathogenic Forms of Huntingtin and Androgen Receptor Inhibit Fast Axonal Transport

    Get PDF
    AbstractHuntington's and Kennedy's disease are autosomal dominant neurodegenerative diseases caused by pathogenic expansion of polyglutamine tracts. Expansion of glutamine repeats must in some way confer a gain of pathological function that disrupts an essential cellular process and leads to loss of affected neurons. Association of huntingtin with vesicular structures raised the possibility that axonal transport might be altered. Here we show that polypeptides containing expanded polyglutamine tracts, but not normal N-terminal huntingtin or androgen receptor, directly inhibit both fast axonal transport in isolated axoplasm and elongation of neuritic processes in intact cells. Effects were greater with truncated polypeptides and occurred without detectable morphological aggregates

    Phylogeography Unplugged: Comparative Surveys in the Genomic Era

    Get PDF
    In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo-Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional ( unplugged ) approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches

    Phylogeography Unplugged: Comparative Surveys in the Genomic Era

    Get PDF
    In March 2012, the authors met at the National Evolutionary Synthesis Center (NESCent) in Durham, North Carolina, USA, to discuss approaches and cooperative ventures in Indo-Pacific phylogeography. The group emerged with a series of findings: (1) Marine population structure is complex, but single locus mtDNA studies continue to provide powerful first assessment of phylogeographic patterns. (2) These patterns gain greater significance/power when resolved in a diversity of taxa. New analytical tools are emerging to address these analyses with multi-taxon approaches. (3) Genome-wide analyses are warranted if selection is indicated by surveys of standard markers. Such indicators can include discordance between genetic loci, or between genetic loci and morphology. Phylogeographic information provides a valuable context for studies of selection and adaptation. (4) Phylogeographic inferences are greatly enhanced by an understanding of the biology and ecology of study organisms. (5) Thorough, range-wide sampling of taxa is the foundation for robust phylogeographic inference. (6) Congruent geographic and taxonomic sampling by the Indo- Pacific community of scientists would facilitate better comparative analyses. The group concluded that at this stage of technology and software development, judicious rather than wholesale application of genomics appears to be the most robust course for marine phylogeographic studies. Therefore, our group intends to affirm the value of traditional (“unplugged”) approaches, such as those based on mtDNA sequencing and microsatellites, along with essential field studies, in an era with increasing emphasis on genomic approaches

    Ocean currents help explain population genetic structure

    Get PDF
    Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management

    Combining fish and benthic communities into multiple regimes reveals complex reef dynamics

    Get PDF
    Abstract Coral reefs worldwide face an uncertain future with many reefs reported to transition from being dominated by corals to macroalgae. However, given the complexity and diversity of the ecosystem, research on how regimes vary spatially and temporally is needed. Reef regimes are most often characterised by their benthic components; however, complex dynamics are associated with losses and gains in both fish and benthic assemblages. To capture this complexity, we synthesised 3,345 surveys from Hawai‘i to define reef regimes in terms of both fish and benthic assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and were spatially heterogeneous by island, depth and exposure. We identified a regime characteristic of a degraded state with low coral cover and fish biomass, one that had low coral but high fish biomass, as well as three other regimes that varied significantly in their ecology but were previously considered a single coral dominated regime. Analyses of time series data reflected complex system dynamics, with multiple transitions among regimes that were a function of both local and global stressors. Coupling fish and benthic communities into reef regimes to capture complex dynamics holds promise for monitoring reef change and guiding ecosystem-based management of coral reefs
    • …
    corecore