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ABSTRACT.—Targeted conservation and management 
programs are crucial for mitigating anthropogenic threats 
to declining biodiversity. Although evolutionary processes 
underpin extant patterns of biodiversity, it is uncommon 
for resource managers to explicitly consider genetic data in 
conservation prioritization. Genetic information is inherently 
relevant to management because it describes genetic diversity, 
population connectedness, and evolutionary history; thereby 
typifying their behavioral traits, physiological climate 
tolerance, evolutionary potential, and dispersal ability. 
Incorporating genetic information into spatial conservation 
prioritization starts with reconciling the terminology and 
techniques used in genetics and conservation science. Genetic 
data vary widely in analyses and their interpretations can 
be challenging even for experienced geneticists. Therefore, 
identifying objectives, decision rules, and implementations 
in decision support tools specifically for management using 
genetic data is challenging. Here, we outline a framework 
for eight genetic system characteristics, their measurement, 
and how they could be incorporated in spatial conservation 
prioritization for two contrasting objectives: biodiversity 
preservation vs maintaining ecological function and 
sustainable use. We illustrate this framework with an 
example using data from Tridacna crocea (Lamarck, 1819) 
(boring giant clam) in the Coral Triangle. We find that 
many reefs highlighted as conservation priorities with 
genetic data based on genetic subregions, genetic diversity, 
genetic distinctness, and connectivity are not prioritized 
using standard practices. Moreover, different characteristics 
calculated from the same samples resulted in different spatial 
conservation priorities. Our results highlight that omitting 
genetic information from conservation decisions may fail to 
adequately represent processes regulating biodiversity, but 
that conservation objectives related to the choice of genetic 
system characteristics require careful consideration. 
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In our world of declining natural resources and biodiversity (Burke et al. 2011, 
Barnosky et al. 2012), targeted conservation and management programs are crucial 
for mitigating anthropogenic threats (Hughes et al. 2010, Pandolfi et al. 2011). A large 
body of literature deals with conservation prioritization methods, the effect of differ-
ent data types on outcomes, and how to decide on conservation strategies under high 
uncertainty (Margules and Pressey 2000, Rondinini et al. 2006, Regan et al. 2009). 
Similarly, much has been written about how to spatially delineate populations and 
conservation units using genetic data (Moritz 1994, Mace et al. 2003, Waples and 
Gaggiotti 2006, Palsbøll et al. 2007, Waples et al. 2008, Funk et al. 2012). However, 
it is relatively uncommon for resource managers to explicitly consider genetic data 
in conservation prioritization processes (Laikre et al. 2010, von der Heyden et al. 
2014). Such genetic data is not overlooked without cause, see Waples et al. (2008) for 
a discussion of scientific and institutional issues that have hampered this integration. 
This is surprising, because evolutionary processes underpin extant patterns of bio-
diversity. Descriptions of genetic diversity, population connectivity, and evolution-
ary history are inherently spatial, and are therefore reasonable to consider in spatial 
planning (Faith 1992, Crozier 1997, Bowen 1999). For example, the genetic make-
up of organisms largely determines their vulnerability to global change by typifying 
their behavioral traits, physiological climate tolerance, evolutionary potential, and 
dispersal ability (Crozier 1997, Carvalho et al. 2010). Furthermore, observed genetic 
diversity can provide information about a species’ long-term persistence and may 
also indicate adaptive potential or evolutionary resilience (Stillman 2003, Sgro et al. 
2011). Genetic methods can provide this type of information, which is otherwise not 
available in the conservation decision-making toolbox (Bowen 1999). Here we pro-
vide a guiding framework linking information gained from population genetics with 
spatial conservation planning. 

Spatial conservation prioritization aims to identify suites of locations for protec-
tion or regulation, considering biodiversity, socio-economic needs, future environ-
mental change, and other sources of uncertainty (Regan et al. 2009, Wilson et al. 
2009). These choices are increasingly made through structured, evidence-based de-
cision making, where the explicit formulation of conservation objectives allows the 
efficient and transparent integration of often conflicting factors, e.g., biological rep-
resentativeness and cost (Wilson et al. 2009), and connectivity (Beger et al. 2010a). 
Many sophisticated approaches to address conservation objectives exist, often fa-
cilitated by decision support tools, such as the “minimum set” approach aiming to 
represent a set of conservation targets (e.g., 30% of each habitat) while minimizing 
the resources spent (Fernandes et al. 2005, Green et al. 2009, Wilson et al. 2009). 
This decision process relies on the spatial representation of biodiversity and factors 
that affect biodiversity such as recruitment, competition, environmental niches of 
species, and local environmental conditions. These factors are often inferred from 
habitat maps and modeled species distributions across a set of planning units that 
provide spatial standardization of prioritized sites (Hannah et al. 2007, Beger and 
Possingham 2008). To date, the use of genetic information in spatial planning sys-
tems has been limited to a few examples. Diniz and Telles (2006) proposed an algo-
rithm to develop reserve systems incorporating spatial autocorrelation patterns of 
intra-species genetic variability. Spatial reserve systems designed with evolutionary 
significant units were shown to be more effective in protecting rare endemics than 
designs using species (Vasconcelos et al. 2012). Conservation prioritization with 
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species richness alone fails to represent phylogenetic diversity, indicating a need to 
include genetic measures to better represent biodiversity (Karl and Bowen 2001, Pio 
et al. 2011). Other studies, many terrestrial-based, have highlighted how evolution-
ary processes may inform conservation prioritization using phylogenetic diversity 
(Faith and Walker 1992, Forest et al. 2007, Pio et al. 2011, Diniz et al. 2012), evolu-
tionary management units (Moritz 2002, Barber et al. 2011, Toonen et al. 2011), phy-
logeography (Moritz and Faith 1998, Carpenter et al. 2011), evolutionary innovation 
(Davis et al. 2007), and surrogate data for genetic diversity (Carvalho et al. 2010), 
but their implementation in spatial decision making is lacking. Nonetheless, our un-
derstanding of what set of objectives is appropriate across the varying spatial and 
temporal scales of genetic data types is poorly developed (Mace et al. 2003, Carvalho 
et al. 2011, Diniz et al. 2012).

Population genetic studies (including phylogeography) can potentially inform min-
imum management units (Moritz 1994, Palsbøll et al. 2007, Toonen et al. 2011, Funk 
et al. 2012), fisheries stock size and boundaries (Hutchinson et al. 2001, Hauser et al. 
2002, von der Heyden et al. 2014), and provide benchmarks for the success of man-
agement (Uthicke et al. 2004). These and other examples of how population genetic 
data contributes to conservation and management focus on the scale and intensity of 
the spatial structuring of neutral genetic diversity, that is, genetic differentiation or 
genetic structure. Such genetic structure partly reflects the scale and amount of gene 
flow and therefore can indicate population connectivity of management areas and 
likely source populations for replenishment following disturbances (Hedgecock et al. 
2007, Lowe and Allendorf 2010, Selkoe and Toonen 2011). Of course, genetic struc-
turing may also be affected by differences in effective population size, demograph-
ic or colonization history, natural selection, or some combination of these factors, 
especially for populations that may not have reached migration drift equilibrium. 
Thus, direct interpretation of population structure in the context of gene flow can 
sometimes be problematic (Whitlock and McCauley 1999, Hart and Marko 2010, 
Lowe and Allendorf 2010, Marko and Hart 2011, Karl et al. 2012). However, genetic 
isolation arising from a lack of gene flow determines the capacity for divergence and 
independent evolution of populations, and taken to an extreme, can ultimately facili-
tate speciation (Coyne and Orr 2004) and local adaptation (Sotka 2005, Sanford and 
Kelly 2011). Genetic tools have also played a major role in discovering cryptic or in-
cipient species and hybrid zones which contribute to spatial patterns of biodiversity, 
but which often go unnoticed (Knowlton 2000, Bickford et al. 2007, Bird et al. 2011).

Incorporating population genetics into spatial conservation prioritization requires 
the definition and spatial delineation of genetically distinct populations of randomly-
mating individuals within the species of interest (i.e., the population genetic struc-
ture). For populations to be genetically distinct, the number of effective migrants 
exchanged between populations per generation must typically be quite low (general-
ly ≤5 effective migrants for detectable population structure to develop and certainly 
≤25) (Mills and Allendorf 1996, Waples and Gaggiotti 2006). This genetic definition of 
populations contrasts with the broader definition of populations commonly used in 
conservation science, which often refers to populations as spatially isolated subunits 
(i.e., biogeographic localities), where genetic distinctness is unknown. In conserva-
tion planning, each planning unit could be viewed as a separate “subpopulation,” 
because one of the underlying assumptions of choosing the size of planning units is 
that the population can persist for some time even if all habitat outside the reserve is 
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destroyed (Murray et al. 1999, Fernandes et al. 2005). Here, we use the genetic defini-
tion of populations as “groups of similar individuals whose genetic make-up is sta-
tistically different from other such groups.” Delineating populations can be a tricky 
task even for terrestrial and freshwater species, which often have smaller population 
sizes than marine species and thus stronger genetic differences between populations 
(due to faster genetic drift). For marine species with dispersive larvae that are capable 
of travelling hundreds of kilometers on ocean currents, the large effective population 
sizes slow the rate of genetic drift and depress traditional measures of population ge-
netic structure such as FST (Waples 1998, Neigel 2002, Hedrick 2005, Hellberg 2009). 
Furthermore, when habitat is large and continuous, spatial genetic change may also 
be continuous, precluding delineation of individuals into discrete groups. However, 
in many such cases an isolation-by-distance analysis (Rousset 2004) can inform the 
spatial scale of demographic processes for species with continuous spatial genetic 
variation, allowing genetically informed choice of planning units (Puebla et al. 2008, 
Ackiss et al. 2013, Crandall et al. 2014).

Coral reefs are among the most iconic marine habitats and are also one of the most 
threatened ecosystems in the world (Hughes et al. 2010, Burke et al. 2011), putting 
these habitats and their associated benefits to mankind in jeopardy (Harley et al. 2006) 
if no interventions slow or reverse the decline (Mumby and Steneck 2008, Hughes 
et al. 2010). Common interventions focus on reducing the compounding stresses to 
the ecosystem, such as closing an area to fishing to enhance population recovery 
and maintain healthy source populations or reducing non-point source pollution 
causing nutrient enrichment (McLeod et al. 2009, De’ath et al. 2012). Although most 
conservation planning efforts in marine environments target ecological timescales, 
the timescale of evolution is much shorter than is commonly appreciated (Hendry 
and Kinnison 1999, Palumbi 2001, Stillman 2003, Schoener 2011), and significant 
anthropogenic effects (e.g., on maturation rate or size) have already been detected 
on the evolutionary trajectory of many marine species (Devine et al. 2012, Olsen 
et al. 2004). Even at deeper timescales, evolutionary patterns (e.g., Evolutionarily 
Significant Units) and processes (e.g., local adaptation) underpin ecological respons-
es, and are thus relevant for conservation decisions (Bowen 1998, Briggs 2005, Rocha 
et al. 2007, Budd and Pandolfi 2010). 

The Indo-Pacific region contains the most biodiverse as well as some of the most 
threatened coral reef systems worldwide (Veron et al. 2009, Burke et al. 2011, Allen 
and Erdmann 2012). Within the Indo-Pacific, there are several high-profile con-
servation initiatives for coral reefs such as the Micronesia Challenge and the Coral 
Triangle Initiative as well as local spatial prioritization efforts (Green et al. 2009, 
Baker et al. 2011, Game et al. 2011, Grantham et al. 2013). These on-the-ground 
programs aim to place large areas of reef under protection, using criteria such as 
biodiversity, sustainable fisheries, food security, avoiding climate change threats, 
and integrating land-based influences (West and Salm 2003, CTI Secretariat 2009, 
McLeod et al. 2009). This region is also notable for many deep genetic divisions 
over relatively short distances (Barber et al. 2002, 2006, 2011, Carpenter et al. 2011, 
Marti-Puig et al. 2014). These genetic discontinuities are consistent with regionally 
isolated populations, such that ecological connectivity among regions is likely to be 
low for many species.

Incorporating genetic information into spatial conservation prioritization starts 
with reconciling the terminology and techniques used in the fields of genetics and 
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conservation science. Here we build a framework that connects genetic measures, 
their ecological meaning, and their corresponding use in conservation planning. We 
illustrate the theoretical framework with an example using data from the boring 
giant clam, Tridacna crocea (Lamarck, 1819), from Philippine and Indonesian coral 
reefs in the Coral Triangle, to highlight how the reef conservation priorities may 
change when different representations of evolutionary processes are considered, as 
compared to the standard practices where evolutionary patterns and processes are 
not used. 

Genetic Decision Rules

The first step in conservation prioritization is to develop objectives and decision 
rules to guide analyses. Such design principles are prolific in the literature and in 
managers’ guidebooks. In general, they deal with conservation features (e.g., things 
to protect; Baker et al. 2011, Gilman et al. 2011), thresholds of amounts of features 
to protect (Fernandes et al. 2005), targets (e.g., what percentage of features to pro-
tect; Carwardine et al. 2009, Baker et al. 2011), and replication (Green et al. 2009). 
Refinements of general design principles may include specific threats such as climate 
change (Fernandes et al. 2012), or predicted states such as risk level, persistence prob-
abilities or information uncertainty (Game et al. 2008, Foley et al. 2010). These deci-
sion rules aim to protect biodiversity representatively, comprehensively, adequately, 
and cost efficiently by trading off competing priorities represented as “cost layers” 
(Wilson et al. 2009). Evolutionary data relate to these goals in several ways. Firstly, 
molecular techniques can identify hidden biodiversity, such as populations with high 
genetic diversity, cryptic species, or isolated populations that should effectively be 
treated as separate entities. Conversely, some nominal species may turn out to be 
genetically indistinguishable ecotypes which, while potentially informative about 
adaptive variation, can bring into question the justification for independent man-
agement strategies (Forsman et al. 2010). Secondly, the evolutionary processes that 
fundamentally underpin the existence and functioning of biodiversity ideally should 
be captured in conservation networks to adequately conserve diversity. For example, 
dispersal between populations may be critical for the replenishment of individual 
populations (in a meta-population framework) and may also maximize adaptive po-
tential by enhancing genetic diversity in that population.

Genetic data take many forms and the variety and nuances of population genetic 
analyses and their interpretations can be challenging even for experienced scientists 
in this field (Whitlock and McCauley 1999, Lowe and Allendorf 2010, Karl et al. 
2012). For these reasons, decision rules for using genetic data in conservation are not 
straightforward and even the objectives might be debatable. For example, should we 
represent the full range of genotypes equally or maximize genetic diversity by pri-
oritizing sites with high genetic diversity over others? Or instead, prioritize isolated 
populations because of their unique genetic make-up? Should we protect contact 
zones where distinct lineages mix to preserve hybrid integration areas as potential 
adaptive zones (Seehausen 2004, Moritz et al. 2009), or should we focus on protect-
ing the core ranges of these lineages and ignore hybrid zones? 

These decisions depend on the overall conservation objective, the basis of all objec-
tive-driven decision-making (Gerber et al. 2007, 2011). In coral reef spatial planning, 
for example, different decision rules would be applied if the objective was to protect 
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biodiversity (encompassing all levels of diversity such as habitats, species, and ge-
netics), or if the objective was to maintain function (management to ensure food 
security or coastal protection goals) such as to support a sustainable fishery (Baums 
2008). In the first, conservation responses need to incorporate the whole range of di-
versity types across the range of a population equally, focus on core ranges of genetic 
lineages, and ensure cryptic and rare species are represented in conservation site 
networks. To achieve the second, zones with high gene flow have high conservation 
priority because sources of demographic and evolutionary scale connectivity should 
be maintained. Following these examples, different system characteristics measured 
with genetic tools may invoke different conservation responses, depending on the 
objective (Table 1). 

Genetic metrics may be site specific or characterize relationships between two or 
more sites, but are estimated from the same empirical data. For instance, the types 
and frequencies of alleles are estimated for populations approximating a specific geo-
referenced location and each population can be described by its genetic diversity, 
uniqueness, and distinctiveness (Tables 1, 2), but the aggregation of this allelic and 
genotypic diversity also informs the relationships among these geo-referenced popu-
lations (analogous to concepts of alpha and beta diversity based on species distribu-
tions, Petit et al. 2008, Diniz et al. 2012). Both types of information (i.e., diversity 
at individual locations and relationships between locations) may be incorporated in 
systematic prioritization but will require modeling or interpolation techniques to 
map the data (Beger and Possingham 2008, Kininmonth et al. 2010, Carvalho et al. 
2011, Pio et al. 2011), with the caveat that spatio-paleoecological modeling of spe-
cies distributions that best fit deep genetic patterns requires spatial paleoclimate 
datasets (Espindola et al. 2012) that are rare in marine environments. Descriptive 
genetic statistics are relatively easily calculated; but where a conservation objective 
is to preserve ecological function (dispersal connectivity), more quantitative param-
eters like gene flow may be relevant. Estimates of gene flow between pairs of sites 
(sometimes asymmetrical depending on the method) are more difficult to obtain as 
they involve specialized software and may be highly sensitive to model parameters 
and assumptions (Whitlock and McCauley 1999, Hart and Marko 2010, Lowe and 
Allendorf 2010, Marko and Hart 2011, Karl et al. 2012). Furthermore, decision rules 
for connectivity in spatial planning are poorly developed and depend on conservation 
objectives. Most commonly, the aim is to protect biodiversity by enhancing overall 
dispersal connectivity in marine reserve networks (Beger et al. 2010b, Treml and 
Halpin 2012), and this connectivity can be represented by measures of demographic 
or evolutionary scale connectivity. In cases where maintaining function is more im-
portant, or where conservation budgets limit the number of reserves substantially, 
strong and persistent source populations should be given highest emphasis (Table 1).

 
Which Molecular Techniques Measure Which System Attributes?

Viable genetically-informed conservation objectives are listed in Table 1. These ob-
jectives are purposefully presented as general principles without assuming advanced 
population genetic knowledge on the part of the reader. Likewise, we are not trying 
to discuss the nuances of the population genetic data sets or the methods for esti-
mating or interpreting them, but rather focus on a mechanism of how to incorporate 
genetic data into spatial conservation prioritization. The implementation of these 
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objectives requires statistical estimates from empirical genetic data. Table 2 defines 
relevant genetic metrics and lists some of the commonly employed approaches for 
obtaining these estimators. There are a multitude of approaches for estimating any 
of these attributes. Here we concentrate on some of the most commonly reported 
statistics, which could be extracted for spatial planning from most journal publica-
tions describing spatial population genetics or phylogeography of a species. Detailed 
comparisons of methods can be found in recent reviews (Holsinger and Weir 2009, 
Saenz-Agudelo et al. 2009, Hart and Marko 2010, Lowe and Allendorf 2010, Bird et 
al. 2011, Ho and Shapiro 2011, Marko and Hart 2011, Karl et al. 2012) and programs 
for undertaking many of these methods are reviewed by Excoffier and Heckel (2006). 
Our goal at present is not to advocate the utility of any specific estimator for con-
servation purposes or to enumerate the nuances of applying such estimators, but 
simply to illustrate how such metrics could be incorporated in a spatial prioritization 
methodology. To that end, we have selected proposed genetic conservation objectives 
(and associated metrics) that typify the most common analyses conducted on single 
species. The degree to which genetic properties of a single species are representa-
tive of other species in the same community is unclear (Kelly and Palumbi 2010, 
Carpenter et al. 2011, Toonen et al. 2011, Bailey et al. 2012, Whitham et al. 2012). For 
example, rocky shore fishes and limpets each displayed highly different evolutionary 
patterns despite being closely related (Bird et al. 2007, von der Heyden et al. 2013); in 
contrast, broad geographic scale delineations between evolutionarily distinct popu-
lations frequently co-occur (Fortuna et al. 2009, Barber et al. 2011, Carpenter et al. 
2011, Jackson et al. 2014). Regardless of whether a single species can represent a com-
munity, establishing methodologies based on the simple case of a single species is 
an obvious precursor to more complex scenarios where genetic information from 
multiple species could be combined.

Changing Conservation Priorities with 
Genetic Data in the Coral Triangle

Based on a data set for the boring clam T. crocea from Indonesia and the Philippines 
(DeBoer et al. 2014), we evaluate how spatial conservation priorities change when 
different types of genetically measured system attributes are incorporated in deci-
sion making, and compare them to outcomes based solely on optimizing for habitat 
representation (Fig. 1). While single species approaches are not common in spatial 
conservation prioritization; here, using a single species exemplar serves to illustrate 
the approach and to unambiguously evaluate the influence of different genetic sys-
tem attributes. 

Genetic Data.—Inputs for the prioritization analysis consisted of 524 individu-
als genotyped at 8 microsatellite loci from 27 populations across Indonesia and the 
Philippines (Online Fig. S1, Online Table S1) with methods described in DeBoer 
and Barber (2010). We chose to focus on four genetic descriptors that capture dif-
ferent aspects of the data and represent a subset of the genetic system attributes that 
might be selected based on the conservation objectives (Table 1). The goal of this 
exercise is to illustrate how such attributes could be used and we have selected rep-
resentative estimators (Table 2). First, genetic sub-regions were determined by site 
clustering inferred with Structure (Pritchard et al. 2000). This assignment method 
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clusters individuals to minimize deviations from Hardy-Weinberg equilibrium allele 
frequencies (the frequencies expected for a randomly mating, idealized population) 
within each cluster and thereby delineates emergent genetic groups. The three resul-
tant geographic clusters described considerable partitioning of genotypic diversity 
(FCT = 0.067, P < 0.00001) with three groups corresponding to the Indian Ocean, 

Table 2. Methods of estimating system attributes using genetic data.

System 
attribute Method
Genetic 
diversity of 
site

Genetic diversity typically correlates with genetic effective population size (Ne) 
(Charlesworth 2009, Hare et al. 2011). The most common estimates of genetic 
diversity are based on (1) expected heterozygosity (H), the chance of that any two 
alleles drawn from the population are different (Nei 1973), or (2) allelic richness 
(AR), the number of alleles per locus. Mutation rate also influences diversity so 
comparisons of diversity across sites must be made with the same marker(s). AR 
may give better indications of adaptive potential (Allendorf 1986), and should 
always be first rarefied (subsampled) to standardize for sample size variation 
(Leberg 2002). Tests for outlier loci showing signs of diversifying selection can 
improve indications of adaptive potential (Foll and Gaggiotti 2008).

Genetic 
uniqueness 
of sites

Uniqueness can be estimated as the percentage of rare or private alleles (PA). PA 
are alleles found in no other sites, and are therefore analogous to range restricted 
species. In practice, a threshold of rarity might be used, (for example, frequency 
less than 10%), instead of focusing only on private alleles, which are sensitive to 
sampling design.

Genetic 
distinctness 
of sites

Distinctiveness indicates how far the genetic composition of each site deviates 
from the mean genetic composition of all sites, similar in concept to analyses of 
variance [node position in a population graph: Dyer and Nason (2004), local FST: 
Foll and Gaggiotti (2006), or concepts of beta diversity; differentiation component 
of diversity: Petit et al. (2008), turnover: Diniz et al. (2012)].

Genetically 
distinct sets 
of sites
(genetic 
subregions)

Many approaches can estimate which subsets of sites form distinct clusters. 
Methods draw upon allele frequencies [such as AMOVA: Excoffier et al. (1992), 
SAMOVA: Dupanloup et al. (2002), BAPS: Corander et al. (2008)] or correlations 
among loci [such as Structure: Pritchard et al. (2000), GENELAND: Guillot et 
al. (2005) and Population Graphs: Dyer and Nason (2004)]. These and additional 
relevant implementations for estimating groupings of sites are listed in Excoffier 
and Heckel (2006). 

Historical 
rates of 
gene flow 
among sites

Historical rates of gene flow can be estimated using coalescent approaches 
[Migrate: Beerli and Felsenstein (2001), IMa: Hey and Nielsen (2007)]. 
Traditionally many investigators have used the inverse of FST as an estimate 
of gene flow, this expectation, however, relies on an idealized “island model” 
whose assumption are unlikely to be met for most populations Whitlock and 
McCauley (1999). 

Recent 
migration 
rates among 
sites 

Assignment testing programs [such as BayesAss+: Wilson and Rannala (2003), 
Structure: Pritchard et al. (2000), BIMr: Faubet and Gaggiotti (2008)] use the 
multilocus genotype of each individual to “assign” it back to the population of 
origin, whereby migrant individuals are those whose genotype is best assigned 
to a different population from that which they live in. These programs work best 
when migration rates are low and populations are highly distinct (Berry et al. 2004, 
Faubet and Gaggiotti 2008). 

Self-
recruitment 
rates of sites

Parentage Analysis based on DNA fingerprinting can provide several demographic 
metrics such as realized dispersal distance and source-destination relationships, 
depending on study design, especially if combined with assignment tests (Brazeau 
et al. 2005, Saenz-Agudelo et al. 2009). 

Hybrid 
zones

Hybrid populations are typically recognized as harboring elevated genetic 
diversity, with atypical combinations of alleles found in some individuals. In 
practice, distinguishing between sympatric cryptic species and hybridization can 
be challenging (Barton and Hewitt 1985, 1989). 
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central Indonesia and Philippines, and the Bay of Cenderawasih (DeBoer et al. 2014). 
Second, allelic richness was estimated in Fstat version 2.9 (Goudet 1995) with rar-
efaction based on a sample size of 12. Allelic richness is a measure of the diversity 
of alleles standardized for sample size, and is a good reflection of genetic popula-
tion size where greater population size can indicate long term stability (persistence) 
(Allendorf 1986) (see Table 1). Third, the data were run through the program GESTE 
(Foll and Gaggiotti 2006) to get estimates of local FST for each population, using de-
fault parameter value settings. Local FST describes the distinctiveness of a population 
in how far that population’s genetic composition differs from the mean of other sam-
pled populations. Fourth, we generated estimates of recent, one-way migration rates 
between the 22 populations within the largest, central cluster identified by Structure 
using BayesAss+ (Wilson and Rannala 2003) with ten replicate runs and default pa-
rameter value settings. 

This method detects recent migration among populations by capitalizing upon 
multilocus genotypes to infer directional migration rates from inbreeding coeffi-
cients without assuming Hardy-Weinberg equilibrium or other restrictive assump-
tions. As the genetic subregions were delineated under the assumption of limited 
recent genetic exchange, the calculation of recent migration rates only applied with-
in each sub-region. The number of populations in the Indian Ocean and those in 
Cenderawasih Bay was not sufficient to conduct this analysis.

Conservation Planning.—We developed spatial conservation prioritization 
scenarios that include baseline conservation features of five reef types from an 

Figure 1. Distribution and assignment of genetic attributes for (A) genetic sub-regions (Structure 
clusters), (B) genetic diversity (allelic richness), (C) genetic distinctness of sites (local F

st
), and 

(D) directional recent rates of gene flow among sites (arrow thickness is proportional to the mag-
nitude of exchange).
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unsupervised classification of satellite imagery (Kakuta et al. 2010). For the reason 
that the aim of prioritization was to establish no-take conservation areas on coral 
reefs, we used an estimate of the amount of artisanal fishing (Halpern et al. 2008, 
http://www.nceas.ucsb.edu/globalmarine/impacts), to represent the cost of reserves 
as lost opportunity for fishers. Our analyses applied the conservation planning 
software Marxan, a widely used and freely available program (http://www.biology.
uq.edu.au/marxan). Marxan finds solutions to an objective function aiming to mini-
mize the cost of an overall reserve system while meeting the targets set for conser-
vation features. We set the target to represent 30% of each baseline conservation 
feature equally (see Table 1 for features). These parameters for baseline conservation 
features and cost remained the same across all scenarios, and in each scenario we 
added parameters representing genetic system characteristics in the context of the 
biodiversity conservation objective (compared in Table 1). As many different spatial 
configurations of solutions may fulfill the objective function, each scenario included 
100 repeat runs to ensure that system variability is captured. We established five 
scenarios to evaluate the differences between using different objectives, and different 
system characteristics (Table 3). 

Spatial conservation decision systems require continuous spatially explicit data 
surfaces, and point data associated with genetic sampling need to be interpolated 
throughout the entire planning region. This requirement constitutes a major obsta-
cle to using genetic point data in spatial conservation prioritization, as it is unclear 
how genetic and evolutionary system characteristics could be modeled using envi-
ronmental parameters in the marine environment, but see Carvalho et al. (2010) for 
a terrestrial example. 

The entire seascape was discretized into squares (30 × 30 km) and those containing 
reef habitat were used as planning units in the spatial prioritization (Online Fig. S1). 
Values for genetic system attributes were assigned to these planning units based on 
location within a subregion (structure) and the values assigned by interpolations (al-
lelic richness, Local FST). We used a resampling procedure in ArcGIS (Zoraster 2003) 
to interpolate values for genetic diversity (allelic richness) and genetic distinctness 
of sites (Local FST) that represents a simplified representation of the patterns (Online 
Fig. S2). From interpolated values, five classes were defined and targets were set for 
each class (Table 3). Recent migration rates required a more complicated procedure, 
because flows are not site specific, and need to be assigned between pairs of plan-
ning units in Marxan (Beger et al. 2010b). To represent this directional connection 
strength in Marxan, we made the simplifying assumption that each sampling site 
is representative of the surrounding seascape and therefore the pairwise migration 
rates can be applied to the proximate neighborhood. We defined the local seascape 
neighborhoods represented by each sampling site based on Thiessen polygons and 
applied the pairwise migration data to the planning units within these neighbor-
hoods (Online Fig. S3). This method effectively extrapolated the genetic-based con-
nectivity estimates (27 sites) to all 1449 planning units used in the analysis. This 
planning unit connectivity matrix was used as the connectivity strength matrix in 
Marxan (Beger et al. 2010b).

Resulting Changes in Conservation Priorities.—The baseline scenario 
using only habitat representation as an optimization criterion captured 30% of all 
habitat types across the region by selecting reserve networks where most sites are in 
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the Java Sea around southern Sulawesi and on the periphery of Palawan, Philippines 
(Online Fig. S4). This pattern was driven mostly by the cost data. When omitting the 
cost data, planning units were selected at equal frequencies of approximately 30%. 
Reef habitats and species assemblages varied widely across the region (Edinger et 
al. 2000, Meyer et al. 2005, Veron et al. 2009), but the classification of habitats used 
here did not capture this variability. Nevertheless, this caveat remained the same 
across all scenarios. When adding genetic data, conservation priorities changed for 
all genetic system attributes, but differently. For example, applying a 30% target for 
each of three subregions to represent structure (Indian Ocean, Central Indo-Pacific 
and Cenderawasih Bay) shifted some conservation focus to Cenderawasih Bay and 
the Indian Ocean sites that were poorly represented in the baseline scenario (Fig. 
2A). Genetic diversity (allelic richness) and genetic distinctness (Local FST) changed 
conservation priorities in almost identical ways (Fig. 2B,C), spreading conservation 
priority sites more evenly around the planning region, and assigning higher priori-
ties to sites in the Central Philippines, the Sangihe Talaud Archipelago, and Indian 
Ocean sites on Sumatra. In contrast, the recent migration rates scenario changed 
conservation priorities predominantly by dotting single priority sites evenly across 
the seascape (Fig. 2D). 

Discussion

In the present study, we present a framework for how to incorporate genetic de-
sign principles for conservation prioritization that bridges the fields of population 
genetics, conservation genetics, and spatial conservation decision science. Our ap-
proach catalogued genetic system attributes at different spatial and temporal scales 
and includes site-specific and between-site parameters (Tables 1, 2). Given the multi-
facetted nature of genetic data, these system attributes require different approaches 
depending on the conservation objectives (e.g., protect biodiversity or ensure func-
tionality) (Table 1). 

Table 3. Inputs and results for conservation scenarios. Targets are the amount of a conservation 
feature conserved. 

No.
Genetic system 
attribute Features Implementation in Marxan

0 Baseline 9 habitat types (high, medium, 
low cover coral habitats, deep 
coral, rock, seagrass/algae, 
sand, mud, other); no genetic 
system features

Targets for all habitat types: 30% 

1 Adaptive 
potential

9 habitat types; 5 allelic 
richness classes

Targets for all habitat types: 30% 
Targets for 5 classes: highest 60%, high 
50%, medium, low, lowest 30%

2 Genetic 
distinctness of 
sites

9 habitat types; 5 local FST 
classes

Targets for all habitat types: 30%
Targets for 5 classes: highest 60%, high, 
medium, low 30%, lowest 60%

3 Genetic 
sub-regions

9 habitat types; 3 sub-regions 
defined by Structure analysis

Targets for all habitat types: 30% 
represent sub-regions evenly at 30%

4 Recent rates 
of gene flow 
among sites

9 habitat types; recent 
migration rates by BayesAss

Targets for all habitat types: 30% 
apply asymmetric connectivity matrix
set connectivity strength modifier
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In our Coral Triangle case study, conservation priorities changed when adding 
genetic data for the boring giant clam T. crocea. We use this case study to illustrate 
that omitting genetic data from basic spatial marine prioritization is unlikely to fully 
represent ecological and evolutionary processes, particularly for highly structured 
organisms such as T. crocea (DeBoer et al. 2014). Whether T. crocea is representative 
of genetic diversity patterns among codistributed taxa is unknown; this is an issue 
underlying any recommendation based on a single taxonomic group. Nonetheless, 
using genetic data for one species highlights potentially significant omissions in con-
ventional habitat-based spatial planning as this genetic diversity represents poten-
tial for these organisms to evolve and adapt to changing environmental conditions. 
Importantly, this example highlights how the conservation priorities changed for 
different types of genetic data used, indicating the need for careful evaluation of con-
servation objectives relating to genetic information.

Of the system characteristics tested, the simple measure of assigning subregions 
based on genetic structure, for example, led to higher priorities in areas where ge-
netic structure can be represented that were not included in the reference reserve 
system (Fig. 2A). We also found close overlap in conservation outcomes for allelic 
richness and Local FST measures, which suggests that some parameters, although 
having somewhat different interpretations in evolutionary context, may yield similar 
information for conservation decisions. For this giant clam data set, allelic richness 
and local FST were inversely correlated (R2 = 0.04, P < 0.001); insofar as this general 
result holds true, then (in the absence of admixture) simple statistics such as allelic 

Figure 2. Difference maps of conservation priorities relative to the baseline scenario that did not 
include genetic data for (A) genetic sub-regions (Structure clusters), (B) adaptive potential (allelic 
richness), (C) genetic distinctness of sites (local F

ST
), and (D) recent rates of gene flow among 

sites (connectivity). These were calculated from selection frequencies of 100 Marxan runs. Cells 
are colored to represent those that were never selected (transparent), those whose high conserva-
tion priority remained unchanged between baseline and genetic scenario (most cells had 100% 
selection frequency), and changes of different intensity with cells having higher or lower priority 
between baseline and genetic scenario as indicated by the color scale. 
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richness might sufficiently represent the information that population genetics can 
contribute to spatial planning.

Our results show that important genetic characteristics and biological processes 
are probably not well represented when using habitats or species richness to develop 
reserve systems. Furthermore, degradation of reefs makes it increasingly inappropri-
ate to focus conservation solely on biodiversity goals, as pristine and biodiverse reefs 
are becoming increasingly rare (Hughes et al. 2003, Halpern et al. 2008, Sandin et al. 
2008). For instance, maintaining the function and productivity of reefs is highlight-
ed as a primary management goal in countries like the Philippines and Indonesia, 
which rely on products from reefs and adjacent habitats to a high degree. Our genetic 
design principles illustrate the different use of genetic information for contrasting 
objectives, for example, hybridization zones might be viewed as valuable elements 
of biodiversity, but in the context of functionality conservation effort should focus 
on the core ranges of hybridizing species (Table 1). Increasing human pressures and 
limited conservation budgets may often push this trade-off towards maintaining 
function over biodiversity.

Although many population genetic studies claim a conservation benefit arising 
from their genetic data, only rarely is such data used in spatial site prioritization 
for conservation. Why is that? An obvious reason is that population genetic data 
are often difficult to interpret (Waples et al. 2008, Karl et al. 2012), and conserva-
tion approaches that map a parameter to inform conservation decisions cannot eas-
ily accommodate nuances and uncertainty. For example, in the present study, we 
focused on genetically distinct populations of randomly-mating individuals within 
a species of interest because this concept aligns nicely with the idea, in conserva-
tion planning, that planning units or clusters represent a meaningful spatial unit. 
Focusing on populations may be somewhat problematic, where genetic system char-
acteristics do not tell the whole story. An extreme example is that of the spinner 
dolphins in which there is no population genetic structure in either nuclear or mito-
chondrial loci assayed to date among recognized sub-species that are distinct only 
at Y-chromosomal markers (Andrews et al. 2013). For some marine animals, despite 
low levels of population genetic structure (and thus previously assumed high levels 
of gene flow) stepping stone isolation-by-distance dispersal processes probably drive 
local-scale differentiation (Puebla et al. 2008, Pinsky et al. 2010, Crandall et al. 2012), 
and shared genetic breaks in suites of coral reef species emerge when considering 
many species in a multispecies comparison (Toonen et al. 2011). Such patterns would 
not be captured when using structure as a genetic system parameter in conservation 
prioritization. 

Another challenge for incorporating population genetic data in spatial marine 
prioritization is the fact that existing spatial planning software requires connectiv-
ity (migration) and conservation feature data for all planning units in the analysis. 
Because genetic sampling will necessarily occur in discrete (and often few) locations, 
a major challenge remains in extrapolating these data to all unsampled locations 
throughout the area of interest to represent the “true” patterns of the genetic system 
attribute in question. While using more quantitative species distribution modeling 
techniques would be an ideal methodology to determine probable values of unsur-
veyed sites (Guisan et al. 2006, Beger and Possingham 2008), a low number of samples 
(27 sites) and high predictor variability across the sampling area (e.g., in reef types) 
typically results in inconclusive models and very low predictive power. Statistical 
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and biophysical models of underlying processes (such as larval dispersal) aiming to 
predict evolutionary patterns are under development for coral reef habitats (Kool et 
al. 2011, Treml et al. 2012, Sbrocco, NESCent, pers comm). However, given that evo-
lutionary patterns form over long timescales, and it is often unknown what drives a 
pattern (e.g., geography vs species’ attributes), the spatial predictors of genetic system 
attributes are often just as sparsely sampled as the genetic attribute itself (Espindola 
et al. 2012). In the example used here, we therefore interpolated a data surface using a 
minimum curvature spline technique that considers the islands of the archipelago as 
barriers (Zoraster 2003). Interpolation techniques using geographic distance bound-
ed by islands may be a technique that adequately estimates patterns for T. crocea, 
as giant clams are known to be highly differentiated (DeBoer et al. 2008, Nuryanto 
and Kochzius 2009). Thus, spatial patterns of population characteristics may indeed 
be driven by geographical patterns. Most interpolation methods use geographical 
distance to extrapolate point data across space, but are limited because they fail to 
consider the environmental and ecological drivers of the observed ecological and 
evolutionary patterns (but see geostatistical kriging approaches, Rossi et al. 1992). 

Although the 27 sampling sites in our case study is a limited representation of the 
hugely diverse reefs of Indonesia and the Philippines, this clam study represents one 
of the densest sampling efforts in the Indo-Pacific to date (Keyse et al. 2014). Clearly, 
these samples need to be expanded to cover the entire study region (e.g., southwest 
Indonesia has not been sampled), or an adequate process-based model should be 
used to interpolate and extrapolate the data. Otherwise, the unsampled regions will 
not be included in the conservation prioritization, highlighting the practical limita-
tions of applying genetic data to spatial planning. From a perspective of extrapolating 
point data, a higher density and broader coverage of sampling sites is advisable to get 
the best representation of genetic parameters across the planning region. Similarly, 
to use more statistically-sound methods of distribution modeling, future genetic 
sampling designs would require covering different sites that may represent the vari-
ability in the drivers (i.e., variables used to predict genetic parameters at unsampled 
sites) most likely to shape genetic system characteristics. 

Genetic sampling extent can also affect the interpretation of genetic system pa-
rameters, especially at the edges of sampled regions. As an illustration of edge ef-
fects, Local FST (genetic distinctiveness) is defined as “the probability that two genes 
chosen randomly from the population share a common ancestor within that popu-
lation without immigration or colonization” (Balding 2003, Gaggiotti et al. 2009). 
Thus, our higher genetic distinctness values in the Indian Ocean and Cenderawasih 
Bay may relate to these sites being at the margins of our study region, and could thus 
either be true sites of high Local FST or it could be high because of uncapture genetic 
characteristics adjacent to but outside our target region. Measuring rare or unique 
alleles (Table 2) also requires exhaustive sampling across the entire project range, 
because the method would be highly skewed if “rare” alleles were quite common at 
unsampled sites. These edge effects may translate into higher conservation priorities 
being given to regions marginal to a study area that are not truly genetically distinct, 
or priority sites with unique alleles might not be captured in a reserve system. To 
avoid such edge effects, the entire species range must be sampled. 

While there are clear technical and methodological hurdles to incorporating 
genetic data into marine spatial planning, another major barrier is institutional. 
Cultural differences between scientific communities play a large role in constricting 
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the pipeline between genetic research and management outcomes (Waples et al. 
2008). For example, clear distinctions have been made between evolutionarily sig-
nificant connectivity (connectivity among populations on evolutionary time scales) 
and demographic connectivity (connectivity that influences local abundance and dy-
namics of populations on ecologically relevant time scales) (Hedgecock et al. 2007). 
While the distinction between demographic and evolutionary connectivity is an im-
portant one, this is only one of many attributes to be considered in prioritization. As 
evolutionary biologists should not overstate the importance of genetic connectiv-
ity estimates for informing patterns of demographic exchange, conservation prac-
titioners must also realize that genetic data (e.g., genetic diversity and evolutionary 
potential) can be important variables to consider in marine spatial planning. For 
example, at a recent Coral Triangle Initiative workshop (2012), regions in Sumatra 
and Sulawesi (Makassar Strait) were prioritized for conservation based on informa-
tion about regional genetic diversity, the former for its genetic uniqueness in the 
Indonesian Archipelago and the latter for its role in maintaining gene flow across the 
region (PH Barber pers obs). This example emphasizes an increasing receptivity of 
marine managers to genetic data once put into a conservation appropriate context. 

A second example of an institutional barrier is the high cost of population ge-
netic research that many managers perceive. While genetics laboratory equipment 
has high capital costs, the recent “next-generation” revolution in genetic technol-
ogy has brought about an exponential decrease in the cost of genetic analysis per 
sample. Large multilocus datasets containing tens of thousands of single nucleotide 
polymorphism (SNP) loci can now be generated in a single step (Genotyping by se-
quencing, GBS; see Willette et al. 2014). Thus, it has become not only possible, but 
often cheaper, to generate datasets with hundreds to many thousands of SNPs per 
individual than it cost to run traditional sequencing of a handful of loci only a few 
years ago. The availability of so many markers greatly enhances the power of genetic 
analyses, allowing researchers to, for example, determine the ancestry of Europeans 
to within a few hundred kilometers of their historical origin (Novembre et al. 2008), 
or uniquely “tag” (DNA-fingerprint) all offspring of an individual from a small tissue 
biopsy (Jones et al. 2005, Anderson and Garza 2006). As costs continue to fall and 
genetic methods such as parentage-based tagging and coalescent modeling continue 
to improve, spatial coverage and accuracy of genetic system characteristics will be-
come increasingly more suited to spatial planning. Yet, major fixed expenditure is 
still required to collect samples across a wide range of sites; this field sampling cost 
is unlikely to decrease.

In the present study we have presented a framework of genetic decision rules using 
a single species case study from a single species with exceptional sampling across the 
Coral Triangle region. Such an example highlights the differences in conservation 
priorities when using genetic data, but it is clear that different life histories across 
taxonomic groups and species result in drastically different spatial distributions of 
genetic characteristics in populations (see Treml et al. 2012 for implications of life 
histories on broad-scale population connectivity). A next step is to evaluate how con-
servation priorities change when including genetic data for multiple taxa with con-
trasting patterns in genetic attributes. Similarly, the genetic data in this case study 
are constrained by including only microsatellite diversity from a handful of loci; more 
genomically comprehensive examinations of within species data would enhance esti-
mates of functional diversity which is more relevant for evaluating adaptive potential 
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(Funk et al. 2012). In mega-diverse systems such as coral reefs, full consideration of 
genetic diversity among a wide cross spectrum of species is important to represent 
major parts of overall biodiversity and functions, and our study represents a first step 
towards routinely incorporating such data into future conservation efforts.
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