288 research outputs found

    Path Puzzles: Discrete Tomography with a Path Constraint is Hard

    Full text link
    We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.Comment: 16 pages, 8 figures. Revised proof of Theorem 2.4. 2-page abstract appeared in Abstracts from the 20th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2017

    Motivations of Students in the Open-Ended Use of Mobile Computing in Lecture-Based Classrooms

    Get PDF
    While research supports the integration of mobile computing into instruction, there is disagreement concerning the unstructured use of mobile devices in lecture-based college classrooms. Research supports the argument that unstructured use creates distraction and decreased academic performance. Research also suggests that unstructured use actually supports lecture instruction through personalized learning situations. In either case, the motivations of students to use mobile device is often unclear. This study sought to investigate the motivations for students’ acceptance of mobile devices. The Unified Theory of Acceptance and Use of Technology (UTAUT) was utilized to identify the factors leading to college students’ adoption of mobile devices. A survey based on UTAUT was distributed to 254 college students in six distinct lecture-based general education courses. The results revealed that Performance Expectancy, Effort Expectancy, and Social Influence were positively correlated with Behavioral Intention for class-related behavior, with Performance Expectancy being the most significant. None of the constructs were significant for behavior unrelated to lecture. Analysis of the students’ intention based on the UTAUT moderators of age, gender, and experience did not produce any significant difference, nor did an analysis of the classes by subject. The study concludes that the ability of a mobile device to complete specific tasks was the strongest motivating factor leading to intention

    Strategy on the Northern Frontier: 1814.

    Get PDF

    Local Casimir Energies for a Thin Spherical Shell

    Full text link
    The local Casimir energy density for a massless scalar field associated with step-function potentials in a 3+1 dimensional spherical geometry is considered. The potential is chosen to be zero except in a shell of thickness δ\delta, where it has height hh, with the constraint hδ=1h\delta=1. In the limit of zero thickness, an ideal δ\delta-function shell is recovered. The behavior of the energy density as the surface of the shell is approached is studied in both the strong and weak coupling regimes. The former case corresponds to the well-known Dirichlet shell limit. New results, which shed light on the nature of surface divergences and on the energy contained within the shell, are obtained in the weak coupling limit, and for a shell of finite thickness. In the case of zero thickness, the energy has a contribution not only from the local energy density, but from an energy term residing entirely on the surface. It is shown that the latter coincides with the integrated local energy density within the shell. We also study the dependence of local and global quantities on the conformal parameter. In particular new insight is provided on the reason for the divergence in the global Casimir energy in third order in the coupling.Comment: 16 pages, revtex 4, no figures. Major additions, clarifications, and corections, references adde

    A Pre-transplant Blood-based Lipid Signature for Prediction of Antibody-mediated Rejection in Kidney Transplant Patients

    Get PDF
    Purpose. The aim of this study is to demonstrate the potential of the pre-transplant lipidome to predict post-transplant antibody-mediated rejection (AMR) in kidney transplant patients. Methods. Patients were selected from a prospective observational cohort of a single-center adult kidney transplant center in the United States. The study included 16 kidney transplant patients who develop AMR within 2 years post-transplant and 29 stable control (SC) kidney transplant patients who did not develop AMR at any time within the post-transplant follow up. Selection of group differences on the day of transplant was determined by t-test analysis. Stepwise forward method was used to create Linear Discrimination Analysis with regularized correction (RLDA). Changes over time were estimated using sparse partial least square method which is validated by permutation testing. T-test was performed to compare two time points for the same group and groups at matched time points. JMP Pro 13 and MetaboAnalyst were used in the analysis of the Data. Results. A comparison of lipids classes on the day of transplant revealed PLs relative concentration differences between SC and AMR. Concentration of phosphatidylcholine (PC) was significantly diminished in AMR, while there was a trend for increased concentration of lysophosphatidylcholine (LPC). AMR group also showed significantly lower concentration of phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), plasmanylethanolamine (PE-O), and plasmenylethanolamine (PE-P). Our data demonstrated that there are significant differences in the lipidome between SC and AMR on the day of transplant. The analysis identified 7 distinct lipids that discriminated between AMR and SC (AUC) =0.95 (95%CI=0.84- 0.98), R2=0.63 (95%CI=0.4-0.8). A sPLSDA analysis of the data revealed a statistically significant alteration in the lipid profile at 6 months post-transplant compared to the day of transplant. The analysis revealed a panel of 13 lipids that were found to differentiate the two groups at 6 month post-transplant . Further data analysis confirms the presence of a sustained lipid metabolic difference between SC and AMR over time that distinguish between the patients with favorable and non-favorable transplant outcomes. Conclusion. This study demonstrates the potential of the pre-transplant lipidome towards determining AMR in kidney transplant patients, raising the possibility of using this information in risk stratification of patients about to undergo transplant.https://scholarscompass.vcu.edu/gradposters/1086/thumbnail.jp

    Band alignment of epitaxial ZnS/Zn_(3)P_2 heterojunctions

    Get PDF
    The energy-band alignment of epitaxial zb-ZnS(001)/α-Zn_(3)P_(2)(001) heterojunctions has been determined by measurement of shifts in the phosphorus 2p and sulfur 2p core-level binding energies for various thicknesses (0.6–2.2 nm) of ZnS grown by molecular beam epitaxy on Zn_(3)P_(2). In addition, the position of the valence-band maximum for bulk ZnS and Zn3P2 films was estimated using density functional theory calculations of the valence-band density-of-states. The heterojunction was observed to be type I, with a valence-band offset, ΔE_V, of −1.19 ± 0.07 eV, which is significantly different from the type II alignment based on electron affinities that is predicted by Anderson theory. n^(+)-ZnS/p-Zn_(3)P_(2) heterojunctions demonstrated open-circuit voltages of >750 mV, indicating passivation of the Zn_(3)P_(2) surface due to the introduction of the ZnS overlayer. Carrier transport across the heterojunction devices was inhibited by the large conduction-band offset, which resulted in short-circuit current densities of <0.1 mA cm^(−2) under 1 Sun simulated illumination. Hence, constraints on the current density will likely limit the direct application of the ZnS/Zn_(3)P_(2) heterojunction to photovoltaics, whereas metal-insulator-semiconductor structures that utilize an intrinsic ZnS insulating layer appear promising

    Comparison of boreal ecosystem model sensitivity to variability in climate and forest site parameters

    Get PDF
    Ecosystem models are useful tools for evaluating environmental controls on carbon and water cycles under past or future conditions. In this paper we compare annual carbon and water fluxes from nine boreal spruce forest ecosystem models in a series of sensitivity simulations. For each comparison, a single climate driver or forest site parameter was altered in a separate sensitivity run. Driver and parameter changes were prescribed principally to be large enough to identify and isolate any major differences in model responses, while also remaining within the range of variability that the boreal forest biome may be exposed to over a time period of several decades. The models simulated plant production, autotrophic and heterotrophic respiration, and evapotranspiration (ET) for a black spruce site in the boreal forest of central Canada (56°N). Results revealed that there were common model responses in gross primary production, plant respiration, and ET fluxes to prescribed changes in air temperature or surface irradiance and to decreased precipitation amounts. The models were also similar in their responses to variations in canopy leaf area, leaf nitrogen content, and surface organic layer thickness. The models had different sensitivities to certain parameters, namely the net primary production response to increased CO2 levels, and the response of soil microbial respiration to precipitation inputs and soil wetness. These differences can be explained by the type (or absence) of photosynthesis-CO2 response curves in the models and by response algorithms of litter and humus decomposition to drying effects in organic soils of the boreal spruce ecosystem. Differences in the couplings of photosynthesis and soil respiration to nitrogen availability may also explain divergent model responses. Sensitivity comparisons imply that past conditions of the ecosystem represented in the models\u27 initial standing wood and soil carbon pools, including historical climate patterns and the time since the last major disturbance, can be as important as potential climatic changes to prediction of the annual ecosystem carbon balance in this boreal spruce forest

    How does Casimir energy fall? III. Inertial forces on vacuum energy

    Full text link
    We have recently demonstrated that Casimir energy due to parallel plates, including its divergent parts, falls like conventional mass in a weak gravitational field. The divergent parts were suitably interpreted as renormalizing the bare masses of the plates. Here we corroborate our result regarding the inertial nature of Casimir energy by calculating the centripetal force on a Casimir apparatus rotating with constant angular speed. We show that the centripetal force is independent of the orientation of the Casimir apparatus in a frame whose origin is at the center of inertia of the apparatus.Comment: 8 pages, 2 figures, contribution to QFEXT07 proceeding
    corecore