3,535 research outputs found
Magnetic shielding and exotic spin-dependent interactions
Experiments searching for exotic spin-dependent interactions typically employ
magnetic shielding between the source of the exotic field and the interrogated
spins. We explore the question of what effect magnetic shielding has on
detectable signals induced by exotic fields. Our general conclusion is that for
common experimental geometries and conditions, magnetic shields should not
significantly reduce sensitivity to exotic spin-dependent interactions,
especially when the technique of comagnetometry is used. However, exotic fields
that couple to electron spin can induce magnetic fields in the interior of
shields made of a soft ferro- or ferrimagnetic material. This induced magnetic
field must be taken into account in the interpretation of experiments searching
for new spin-dependent interactions and raises the possibility of using a flux
concentrator inside magnetic shields to amplify exotic spin-dependent signals.Comment: 8 pages, 5 figure
Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry
We report the use of an atomic magnetometer based on nonlinear
magneto-optical rotation with frequency modulated light (FM NMOR) to detect
nuclear magnetization of xenon gas. The magnetization of a
spin-exchange-polarized xenon sample (cm at a pressure of bar,
natural isotopic abundance, polarization 1%), prepared remotely to the
detection apparatus, is measured with an atomic sensor (which is insensitive to
the leading field of 0.45 G applied to the sample; an independent bias field at
the sensor is G). An average magnetic field of nG induced by
the xenon sample on the 10-cm diameter atomic sensor is detected with
signal-to-noise ratio , limited by residual noise in the magnetic
environment. The possibility of using modern atomic magnetometers as detectors
of nuclear magnetic resonance and in magnetic resonance imaging is discussed.
Atomic magnetometers appear to be ideally suited for emerging low-field and
remote-detection magnetic resonance applications.Comment: 4 pages, 4 figure
AC Stark shift noise in QND measurement arising from quantum fluctuations of light polarization
In a recent letter [Auzinsh {\it{et. al.}} (physics/0403097)] we have
analyzed the noise properties of an idealized atomic magnetometer that utilizes
spin squeezing induced by a continuous quantum nondemolition measurement. Such
a magnetometer measures spin precession of atomic spins by detecting
optical rotation of far-detuned probe light. Here we consider maximally
squeezed probe light, and carry out a detailed derivation of the contribution
to the noise in a magnetometric measurement due to the differential AC Stark
shift between Zeeman sublevels arising from quantum fluctuations of the probe
polarization.Comment: This is a companion note to physics/040309
MR400: Assessing Compliance with BMPs on Harvested Sites in Maine: Final Report
The research was designed to help answer three questions: (1) What are the documented types of impacts on water quality from forestry activities in Maine? (2) Do timber harvesters use the best management practices recommended by the state to control water pollution? (3) Are these practices effective when they are used?https://digitalcommons.library.umaine.edu/aes_miscreports/1025/thumbnail.jp
Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?
Noise properties of an idealized atomic magnetometer that utilizes spin
squeezing induced by a continuous quantum nondemolition measurement are
considered. Such a magnetometer measures spin precession of atomic spins by
detecting optical rotation of far-detuned light. Fundamental noise sources
include the quantum projection noise and the photon shot-noise. For measurement
times much shorter than the spin-relaxation time observed in the absence of
light () divided by , the optimal sensitivity of the
magnetometer scales as , so an advantage over the usual sensitivity
scaling as can be achieved. However, at longer measurement times,
the optimized sensitivity scales as , as for a usual shot-noise
limited magnetometer. If strongly squeezed probe light is used, the Heisenberg
uncertainty limit may, in principle, be reached for very short measurement
times. However, if the measurement time exceeds , the
scaling is again restored.Comment: Some details of calculations can be found in a companion note:
physics/040712
Women’s Leader Development Programs: Current Landscape and Recommendations for Future Programs
The gender gap in leadership positions is unjust and unproductive. In this paper, we focus on one solution – leader development. We leverage a content analysis of the top U.S. women’s leader development programs (WLDPs) and literature on women’s leadership and leader development. We provide seven evidence-based recommendations for WLDPs including: identify measurable objectives, increase access for emerging leaders, cultivate a paradox mindset around leader and gender identity, leverage experiential learning, expand networks, educate about second-generation gender bias, and align evaluations. We urge administrators to adopt our recommendations as one piece of a systematic effort to pursue gender parity in leadership
Surface water inundation in the boreal-Artic: potential impacts on regional methane emissions
Northern wetlands may be vulnerable to increased carbon losses from methane (CH4), a potent greenhouse gas, under current warming trends. However, the dynamic nature of open water inundation and wetting/drying patterns may constrain regional emissions, offsetting the potential magnitude of methane release. Here we conduct a satellite data driven model investigation of the combined effects of surface warming and moisture variability on high northern latitude (45° N) wetland CH4 emissions, by considering (1) sub-grid scale changes in fractional water inundation (Fw) at 15 day, monthly and annual intervals using 25 km resolution satellite microwave retrievals, and (2) the impact of recent (2003-11) wetting/drying on northern CH4 emissions. The model simulations indicate mean summer contributions of 53 Tg CH4 yr-1 from boreal-Arctic wetlands. Approximately 10% and 16% of the emissions originate from open water and landscapes with emergent vegetation, as determined from respective 15 day Fw means or maximums, and significant increases in regional CH4 efflux were observed when incorporating satellite observed inundated land fractions into the model simulations at monthly or annual time scales. The satellite Fw record reveals widespread wetting across the Arctic continuous permafrost zone, contrasting with surface drying in boreal Canada, Alaska and western Eurasia. Arctic wetting and summer warming increased wetland emissions by 0.56 Tg CH4 yr-1 compared to the 2003-1 mean, but this was mainly offset by decreasing emissions (-0.38 Tg CH4 yr-1) in sub-Arctic areas experiencing surface drying or cooling. These findings underscore the importance of monitoring changes in surface moisture and temperature when assessing the vulnerability of boreal-Arctic wetlands to enhanced greenhouse gas emissions under a shifting climate
Investigation of microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells
Using laser optical pumping, widths and frequency shifts are determined for
microwave transitions between ground-state hyperfine components of Rb
and Rb atoms contained in vapor cells with alkane anti-relaxation
coatings. The results are compared with data on Zeeman relaxation obtained in
nonlinear magneto-optical rotation (NMOR) experiments, a comparison important
for quantitative understanding of spin-relaxation mechanisms in coated cells.
By comparing cells manufactured over a forty-year period we demonstrate the
long-term stability of coated cells, an important property for atomic clocks
and magnetometers
Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range
Recent work investigating resonant nonlinear magneto-optical rotation (NMOR)
related to long-lived (\tau\ts{rel} \sim 1 {\rm s}) ground-state atomic
coherences has demonstrated potential magnetometric sensitivities exceeding
for small () magnetic
fields. In the present work, NMOR using frequency-modulated light (FM NMOR) is
studied in the regime where the longitudinal magnetic field is in the
geophysical range (), of particular interest for many
applications. In this regime a splitting of the FM NMOR resonance due to the
nonlinear Zeeman effect is observed. At sufficiently high light intensities,
there is also a splitting of the FM NMOR resonances due to ac Stark shifts
induced by the optical field, as well as evidence of alignment-to-orientation
conversion type processes. The consequences of these effects for FM-NMOR-based
atomic magnetometry in the geophysical field range are considered.Comment: 8 pages, 8 figure
- …