356 research outputs found

    An Efficient Discontinuous-Mode Model of a Switch Pole

    Get PDF
    Simulating switching power supplies presents many challenges. A variety of switch pole models is available, from the physics-based to the behavioral. The present work develops and demonstrates a behavioral model that works well in discontinuous mode. The new model eliminates the extremely fast time constants normally associated with switches in a high impedance state. Simulation time is improved and fixed-time-step algorithms are now stable with reasonable step size

    Modeling Controlled Switches and Diodes for Electro-Thermal Simulation

    Get PDF
    Designers of advanced power converters may choose from a variety of switching device models for simulation. Some situations call for simple idealized models, while others require physics-based models. When evaluating thermal system performance, a behavioral model that includes both conduction and switching losses is desired. A set of models has been developed to include both unidirectional devices, such as IGBTs, BJTs, and diodes, and bidirectional devices, such as MOSFETs. Logic and timing elements are used to insert voltage and current sources into the circuit at appropriate times. All losses affect circuit operation, so simulation can accurately predict losses when the load affects the switching pattern. The model was constructed in Dymola and included thermal ports to be attached to a model of the thermal system. Temperature dependency of device parameters can be included with minor modifications. Experimental verification is shown

    A Method of Including Switching Loss in Electro-Thermal Simulations

    Get PDF
    Often, power electronics systems are simulated with ideal switching elements, perhaps augmented with conduction loss models. A behavioral model is proposed that also includes switching loss and is independent of switching frequency. Therefore, it is suitable for variable frequency control methods, including hysteresis, delta modulation, and random PWM. Models have been realized in Dymola using voltage-controlled voltage sources, current sources, logic, and additional ideal switches. Thermal ports are included to facilitate electro-thermal simulation. A method for parameter extraction is demonstrated using experimental data from standard PWM

    Machine Design Considerations for the Future Energy Challenge

    Get PDF
    Motors consume a significant fraction of electricity in the United States and in the world. As part of the International Future Energy Challenge, student teams are endeavoring to improve the efficiency of fractional-horsepower machines. The present work summarizes the motor design and construction process for a 500 W prototype induction machine targeting efficiency above 80%. Analytical and finite-element results are shown

    Transformer Leakage Inductance Design Methodology

    Get PDF
    The leakage inductance exhibited by a transformer depends on its winding geometry, which generally involves the selection of several key design parameters in addition to the winding structure and the interleaving configuration. With few resources explaining the effects of these design choices on the observed leakage inductance, numerous trial-and-error iterations become necessary to realize the desired leakage inductance. This paper explores more than a hundred winding geometries feasible in a 2- winding transformer comprising the same magnetic core, number of turns, and wire gauge, and finds the leakage inductance for each unique design using 2-D finite element method (FEM) simulations in association with the semi-analytical double-2-D model. These leakage inductances are plotted and further analyzed to understand the effects of different design parameters on the effective leakage inductance. The results presented herein, and the conclusions drawn from this research can serve as a valuable resource for future design practitioners from both industry and academia

    New Hybrid Model for Evaluating the Frequency-Dependent Leakage Inductance of a Variable Inductance Transformer (Vit)

    Get PDF
    Skin and proximity effects can cause a significant drop in the effective leakage inductance of a transformer when the operating frequency is increased. Although the magnetic image method-based double-2-D model can calculate the low-frequency leakage inductance with sufficient accuracy, it is inherently a frequency-independent model. While Dowell\u27s 1-D model uses frequency-dependent relations to account for both skin and proximity effects, its accuracy is severely affected by the assumed winding geometry. In this paper, a hybrid model is proposed that uses superposition to combine a modified Dowell\u27s model with the double-2-D model. The proposed model is investigated on a variable inductance transformer (VIT)-a partially-filled transformer whose leakage inductance can be varied by moving one of the windings mechanically. The frequency-dependent leakage inductances of the VIT evaluated using the hybrid model are in excellent agreement with the corresponding finite element method (FEM) simulated and experimentally measured values, thereby validating the proposed hybrid model

    A Current-Sensorless Digital Controller for Active Power Factor Correction Control Based on Kalman Filters

    Get PDF
    For low-power AC-DC converters, power factor correction (PFC) can be accomplished simply with certain converters operating in discontinuous conduction mode (DCM). At higher power levels, DCM results in higher losses, so most PFC converters use current feedback to actively track the correct current waveshape. This work presents a way to provide PFC control without the current sensor, by replacing the sensor with a Kalman filter, which is essentially a stochastic observer. Experimental results verify its high power factor and low total harmonic distortion (THD)

    Evaluating Conduction Loss of a Parallel IGBT-MOSFET Combination

    Get PDF
    A variety of power devices are available to designers, each with specific advantages and limitations. For inverters, typically an IGBT combined with a p-i-n diode is used to obtain high current density. Recent developments in high-voltage MOSFETs support other alternatives. For example, a MOSFET can be paralleled with an IGBT to reduce losses at low currents, while the IGBT carries the load at high currents. The current work evaluates conduction losses in this configuration, showing applicability to generic inverters

    Discrete-Time Ripple Correlation Control for Maximum Power Point Tracking

    Get PDF
    Ripple correlation control (RCC) is a high-performance real-time optimization technique that has been applied to photovoltaic maximum power point tracking. This paper extends the previous analog technique to the digital domain. The proposed digital implementation is less expensive, more flexible, and more robust. with a few simplifications, the RCC method is reduced to a sampling problem; that is, if the appropriate variables are sampled at the correct times, the discrete-time RCC (DRCC) algorithm can quickly find the optimal operating point. First, the general DRCC method is derived and stability is proven. Then, DRCC is applied to the photovoltaic maximum power point tracking problem. Experimental results verify tracking accuracy greater than 98% with an update rate greater than 1 kHz

    Reducing Common-Mode Voltage in Three-Phase Sine-Triangle PWM with Interleaved Carriers

    Get PDF
    Interleaving PWM waveforms is a proven method to reduce ripple in dc-dc converters. The present work explores interleaving for three-phase motor drives. Fourier analysis shows that interleaving the carriers in conventional uniform PWM significantly reduces the common-mode voltage. New DSP hardware supports interleaving directly with changes to just two registers at setup time, so no additional computation time is needed during operation. The common-mode voltage reduction ranges from 36% at full modulation to 67% when idling with zero modulation. Third harmonic injection slightly reduces the advantage (to 26% at full modulation). However, the maximum RMS common-mode voltage is still less than 20% of the bus voltage under all conditions. Low-voltage experimental results support the findings
    • …
    corecore