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Discrete-Time Ripple Correlation Control for
Maximum Power Point Tracking

Jonathan W. Kimball and Philip T. Krein

Abstract—Ripple correlation control (RCC) is a high-perfor-
mance real-time optimization technique that has been applied to
photovoltaic maximum power point tracking. This paper extends
the previous analog technique to the digital domain. The proposed
digital implementation is less expensive, more flexible, and more
robust. With a few simplifications, the RCC method is reduced
to a sampling problem; that is, if the appropriate variables are
sampled at the correct times, the discrete-time RCC (DRCC)
algorithm can quickly find the optimal operating point. First,
the general DRCC method is derived and stability is proven.
Then, DRCC is applied to the photovoltaic maximum power point
tracking problem. Experimental results verify tracking accuracy
greater than 98% with an update rate greater than 1 kHz.

Index Terms—Maximum power point tracking (MPPT), opti-
mization, photovoltaic (PV).

NOMENCLATURE

Equilibrium value of a variable .

Value of that corresponds to a cost function
optimum .

Zero-average ripple on .

Small-signal capacitance of photovoltaic (PV)
panel.

Duty ratio.

Time derivative of .

PV panel current.

Generic cost function.

Optimal value of .

, Control gain.

Approximate ratio between PV panel voltage at
maximum power and .

Number of switching periods between samples.

PV panel power.

Switching function (binary-valued).

Manuscript received March 17, 2008; revised May 28, 2008. Current version
published November 21, 2008Recommended by Associate Editor K. Ngo.

J. W. Kimball is with the Missouri University of Science and Technology,
Rolla, MO 65409 USA (e-mail: kimballjw@mst.edu).

P. T. Krein is with the University of Illinois at Urbana-Champaign, Urbana,
IL 61801 USA (e-mail: krein@illinois.edu).

Digital Object Identifier 10.1109/TPEL.2008.2001913

Small-signal resistance of PV panel.

Previous instant of control adjustment.

Sampling instant (time within period).

Period of ripple on .

Generic control input.

PV panel voltage.

PV panel open-circuit voltage.

Positive slope of .

Negative slope of .

Variable that has ripple.

Generic correlation variable.

I. INTRODUCTION

P OWER electronics applications provide ample opportuni-
ties for energy-based optimization. Induction motor flux

magnitude [1]–[7] or dc-dc converter deadtime [8], [9] can be
adjusted for maximum efficiency. Active filters can be tuned
for best performance [10]. Most alternative energy sources have
a well-defined operating point where they deliver either max-
imum power or maximum efficiency. In particular, photovoltaic
(PV) cells should always be operated at their maximum power
point, a task accomplished by a maximum power point tracking
(MPPT) control. Many MPPT methods of varying complexity
have been proposed in both analog and digital frameworks [11].

Ripple correlation control (RCC) [12]–[14] is a real-time op-
timization method particularly suited for switching power con-
verters. Its objective is to maximize or minimize a cost func-
tion, such as a power or energy quantity in an MPPT applica-
tion. RCC uses information present in the inherent switching
ripple to determine the gradient of the cost function. The result
is that information available on the fast time scale of current
and voltage ripple enables the control to attain a slow time scale
objective, operation at the optimum. RCC has been applied to
the MPPT problem [12]–[21], motor efficiency maximization
[12], [22]–[27], deadtime optimization [12], [28], [29], and filter
tuning [10].

Discrete-time ripple correlation control (DRCC) extends
RCC to the discrete-time domain [30], [31]. A brief summary
of RCC is included in Section II for background. In principle,
the RCC signals could be sampled at a high rate and the contin-
uous-time method could be transformed to discrete time. This
requires sampling at many times the switching frequency, and
has limited practical merit. Instead, knowledge of waveshapes
can be used to drastically reduce the sampling requirements

0885-8993/$25.00 © 2008 IEEE
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while achieving equivalent results, as shown in Section III.
Section IV proves that the algorithm has a steady-state equi-
librium where the ripple encircles the maximum power point.
Section V introduces a mode-switching algorithm in the context
of an experimental MPPT that helps ensure global optimization
rather than the local optimum operation typical of most gradient
controls. An experimental converter achieves greater than 98%
tracking accuracy in direct sun at update rates of 1 kHz or more.

II. BACKGROUND: RIPPLE CORRELATION CONTROL

RCC uses switching ripple to optimize a cost function that
is a function of a state variable . The experimental converter
described in Section V is applied to an MPPT application for
a PV panel, so the development in Sections II–IV will assume
that the objective is to choose a cost function representative of
panel power and maximize . An equivalent formulation can
be developed to minimize a cost function, as in efficiency maxi-
mization (power loss minimization), with a sign change. Global
stability requires that is unimodal, that is, there is a single
global maximum. In a practical solar application, local shading
can create multiple peaks [32], and the mode-switching method
of Section V can increase the likelihood that the global max-
imum is achieved.

For a suitable cost function , the maximum value occurs
where

(1)

The power conversion plant has an input (such as the duty ratio
in a dc-dc converter). Just as must be unimodal, the steady-
state value

(2)

must be monotonic over the operating range. Monotonicity en-
sures that there is no polarity inversion in the system gain, and
may be satisfied by limits on or by a coordinate transforma-
tion. An integral control law

(3)

will drive the operating point to the maximum value of . The
sign of and the effect of on determine whether the control
law goes towards a maximum or a minimum. The magnitude of

influences convergence rate.
Usually, derivatives like are unavailable in a practical

system, so a more useful controller is needed. If the integrand of
(3) is multiplied by a positive value, the equilibrium operating
point does not change. A convenient multiplier is ,
which by the chain rule yields

(4)

This control law only needs time derivatives, likely to be readily
available in a real system. The transformation is possible if

is nonzero, except at isolated points that will not con-
tribute to the integral. In particular, if the converter is always
switching with a duty ratio and switching period

, then the derivatives of state variables such as currents
and voltages will in fact be nonzero except at switching edges,
and provide suitable choices for .

Many approximations to (4) have been suggested, all of which
require at least one multiplication. Often in dc-dc converters,

is piecewise constant. If the sign information is adequate,
then a synchronous demodulator can be used. In this approach
[20], [28], [29], is calculated (usually with a multiplication),

is determined with a filter, and analog switches controlled
by determine an integrand similar to (4). Another
variation is to consider only the phase information [10], [33]. In
this formulation, RCC resembles a phase-locked loop. In prin-
ciple, the two simplifications can be combined, where the in-
tegrand is approximated as . These ap-
proximations affect noise immunity, convergence rate, and po-
tentially the equilibrium value, since some information has been
discarded.

RCC to date has been implemented with analog circuits.
Time derivatives can be obtained easily. To achieve better noise
immunity, though, the derivative function usually is replaced
with a filter whose gain rolls off well above the frequency range
of interest, which is normally around the switching frequency.
Multiplication is possible with an analog multiplier such as
an AD633. Unfortunately, typical analog multipliers are im-
plemented in bipolar technology and have relatively high bias
currents. For example, an Analog Devices AD633 consumes
120 mW under rated conditions.

RCC is a general-purpose optimization technique for real-
time applications. As long as states and cost functions that both
contain ripple can be identified, there will be adequate informa-
tion to find the optimum operating point. RCC is particularly
well-suited to switching power converters, since the switching
action continuously excites the states and creates ripple. RCC
has also been proposed for motor drive applications. The stored
energy in the motor’s magnetic field may damp out the ripple
that results from the main switching elements. In this case, an
extra ripple term at a suitable low frequency can be added to pro-
duce the necessary nonzero signal. Other observer-based
solutions that provide signals for the RCC control law are likely
to be possible.

III. DISCRETE-TIME FORMULATION

A digital version of RCC is preferable for many reasons.
While analog multipliers tend to be power-hungry, low-power
microcontrollers are available with hardware digital multipliers.
For example, an MSP430F148 has a hardware 8 8 bit mul-
tiplier, and the total microprocessor core consumes less than
2.5 mW. A digital implementation enables other features, too,
such as protection modes and user interfaces.

While the analog control law (4) could be converted to dis-
crete-time with fast sampling, e.g., ten or more samples per
switching period, and a suitable high-end microcontroller or
DSP, the application of general waveform knowledge yields a
simpler control law. In dc-dc converter applications, is piece-
wise linear, so its time derivative is piecewise constant: first a
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positive value , then a negative value . Over a time in-
terval from 0 to

(5)

Here, is the switching period and is the fraction of the
period when , which may or may not be the same as
the duty ratio of a controlled switch. Both and may vary,
so long as neither goes to zero and does not go to 1. The
form for in (5) can be substituted into (4). A definite integral
determines the change in over a single period. The period
can be subdivided according to the value of and the definite
integral can be evaluated symbolically

(6)

This result (6) can be generalized to any switching period that
is aligned with the minimum of (the rising edge of ). If a
periodic steady-state condition is possible, it would require

(7)

These relationships (7) can be substituted into (6) to give a con-
trol law of

(8)

Just as many approximations have been proposed for the analog
RCC law (4), there are possible simplifications for (8). Instead
of using a gain on the difference between samples of , use a
gain on the of the difference. If the actuation is quantized,
there may be no practical difference between (8) and

(9)

Thus, the input is adjusted in proportion to the sign of the differ-
ence between two samples. In periodic steady state, not only will

and , but also notice that the process
will drive to its optimum and will produce

. The control law of (9) is related to delta modulation [34].
A generalization is to hold constant for several cycles , then
update based on two samples within a single cycle. The ex-
perimental system discussed below uses a controller of the form

(10)

with to yield low control power.
The key result of this analysis is that all of the information

needed to drive the operating point to its optimum can be ob-
tained from two samples per switching period, taken at specific

Fig. 1. Samples away from maximum power point (current is too low).

Fig. 2. Samples at the maximum power point.

times: when the state variable is at a maximum and when
is at a minimum. At equilibrium, oscillates around the max-
imum at twice the switching frequency and reaches the same
value at each end of the oscillation.

The sampling process is shown in Figs. 1 and 2 for an MPPT.
The generic cost function is implemented as , the panel
power. The state variable is chosen as , the panel cur-
rent. Panel voltage is also sampled to allow computa-
tion of . In Fig. 1, the panel is not at the
maximum power point—current needs to increase. In Fig. 2, the
panel is at the maximum power point. The instantaneous power
passes through the maximum twice in each switching cycle,
once while the current is increasing and once while the current
is decreasing. The average delivered power is essentially as high
as possible in Fig. 2, limited only by the converter ripple. The
control algorithm is shown in block diagram form in Fig. 3.
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Fig. 3. Block diagram of DRCC sampling process.

Although the DRCC control law (10) superficially resembles
a conventional perturb-and-observe (P&O) process for optimum
tracking [35], there are at least two primary differences. First,
the time scale is far different. The P&O technique uses two sam-
ples of output power that correspond to two steady-state oper-
ating points. When the operating point is adjusted under a P&O
method, the system must wait for all transients to settle before
recording information. In contrast, DRCC uses a pair of sam-
ples within a single switching period. The update rate can be
as fast as the switching frequency, with suitable choices of the
microcontroller and analog-to-digital converter (ADC) system.
Second, P&O always leaves the present operating point to de-
termine whether the optimum is nearby. It does not fully con-
verge, in the sense that the operating point must be adjusted
on a continuing basis. DRCC uses information in the ripple at
a given operating point to determine whether equilibrium has
been reached, and will in fact converge to a specific duty ratio,
altering it automatically if a parameter changes. P&O always
exhibits subharmonics (large-signal operating point ripple at a
fraction of the MPPT update rate), whereas DRCC achieves true
equilibrium.

IV. DRCC STABILITY

The stability of continuous-time RCC was proven in [22],
but a new stability proof is needed for the much simpler DRCC
process. There are two aspects to prove: first, that the equilib-
rium corresponds to the optimum, and second, that the control
law (10) will cause the operating point to converge to this equi-
librium. The proof below will consider only the maximization
problem, since minimization can be achieved with a sign change
on the gain .

A few assumptions and definitions are necessary. Assume
that the plant has an average model

(11)

The average-model state variable can be related to the physical
state variable with an algebraic ripple correction function

(12)

Although the variable names and terminology are different,
this is the same concept as in Krylov–Bogoliubov–Mitropolsky
(KBM) averaging [36], [37]. The ripple is small (relative to

and ) with zero mean over a switching period. Assume also
that the dynamical system (11) has an equilibrium at .
The input is constrained such that

(13)

The equilibrium function must be monotonic on this in-
terval. The cost function is assumed to be unimodal, with
a unique maximum

(14)

Equilibrium is reached where the control law (10) causes no
change in from sample to sample. The input is updated
every based on two samples of during the immediately
preceding switching interval. By the definition of duty ratio, the
change in is

(15)

If is sufficiently large, . Rolle’s theorem states (as
quoted from [38, p. 154]):

Suppose is continuous on the interval and differ-
entiable on . If , then there exists at least
one number , with .

This applies to DRCC directly. Equilibrium corresponds to a
point where no longer changes, which means that the two sam-
ples of are equal. To restate Rolle’s theorem in the appropriate
variables:

Suppose is continuous on the interval

(16)

and differentiable on the corresponding open interval. If

(17)

then there is at least one number in the interval (16) with

(18)

So, the equilibrium occurs where the ripple band encloses the
maximum. This is as close to the maximum as any sample-based
control law can reach without full knowledge of the plant dy-
namics. The ripple band can be made arbitrarily small through
design choices that trade tracking accuracy, switching fre-
quency, and signal-to-noise ratio.
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Since the equilibrium is the correct operating point, the next
objective is to prove that the control law (10) will converge to
the equilibrium. Define

(19)

The third new variable is determined by (10). For suffi-
ciently small

(20)

Two derivatives are needed in (20). For sufficiently small ripple,
see (21) shown at the bottom of the page. That is, the derivative
is approximated by the difference in two samples of divided
by the difference in the corresponding values of . The other
derivative is known to be of constant sign since
is monotonic. Through a series of substitutions, we find (22),
shown at the bottom of the page.

There are four factors in (22). The derivative is of con-
stant sign because of monotonicity. The absolute value in the
numerator results from multiplying the actual difference by the
sign of the difference. The denominator is always negative, as
the difference between a minimum and a maximum. The gain
is constant and can be chosen so that is always positive (ap-
proaching the desired operating point) or zero (at equilibrium).
The sign of the gain must be

(23)

The magnitude of the gain is chosen for a particular problem so
that the system quickly approaches the maximum without undue
overshoot. Conceptually, this is similar to Newton’s method or,
more precisely, the secant method [39]. A large gain will cause
oscillation around the maximum, while a small gain will slowly
traverse until reaching equilibrium.

So as long as the physical plant satisfies some basic con-
ditions—unimodal , monotonic —the DRCC control
law (10) will force the plant to converge to the equilibrium
where is maximized. The control designer must choose
an appropriate cost function, an appropriate correlation variable

, and the gain . As was shown in [21], must be chosen to
minimize phase delay effects in the system. That is, most prac-
tical systems have more than one state variable. The problem
must be reformulated into a scalar system that most nearly ap-
proximates the real system in the frequency range of interest.
For a PV MPPT, the best solution is to choose the right physical
variable, usually panel voltage. For other systems, observers and
state coordinate transformations may be helpful.

V. APPLICATION TO SOLAR POWER

RCC has been explored in detail for PV maximum power
point tracking [15]–[18], [21], the application that motivated the
present work. RCC-based MPPT controls are extremely fast and
accurate. DRCC retains these characteristics and offers several
advantages over RCC, such as low power consumption due to
digital implementation and inherent simplicity.

PV panels deliver maximum power at a particular operating
point that varies with insolation and temperature. A typical I-V
characteristic for a solar cell is

(24)

is the short-circuit current, which varies linearly with the
insolation. is the thermal voltage and is a tech-
nology-dependent scale factor. The voltage on a PV panel scales
with the number of cells connected in series, while the current
is limited by the weakest cell in a series string (to a first ap-
proximation). Power, the product of current and voltage, has a
well-defined maximum where current is a large fraction of
and voltage is a large fraction of the open-circuit voltage .
Experimental results for panel current and power, as functions
of voltage, are shown in Fig. 4 for the panel used in the exper-
iments to follow. Notice that the peak power occurs at a panel
voltage of about 17 V, compared to an open-circuit voltage of

(21)

(22)
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Fig. 4. Panel current and power as functions of voltage.

about 20.5 V. See Section V-B for more details. This shape is
typical for all p-n junction PV cells.

DRCC can be used as part of a highly effective MPPT.
MPPTs are used to operate a PV panel as close to the maximum
power point as possible [11]. For the generic cost function ,
an MPPT uses panel power . For the correlation variable

, an MPPT can use either panel current or panel voltage
or both. As shown in [17] and [21], RCC performs better

if voltage is used rather than current. In essence, correlation
with reduces the influence of capacitive stored energy on
the optimization.

A. Energy Storage Effects

Since the cost function is power, stored energy can affect
the performance of DRCC. A PV cell is an illuminated p-n
junction, and stores energy in the form of stored charge that
varies with voltage. This can be modeled as a nonlinear junction
capacitance. A typical MPPT uses a boost converter or other
current-fed switching power converter. Panel current then has
a predominantly dc value with small triangular ac ripple at the
switching frequency. The relationship between ripple current
and changes in stored charge (capacitive voltage ripple) varies
with the switching frequency. While the ripple current and
voltage still contain information about the operating point, the
capacitive phase shift complicates the process. The
product is not the true panel power, and no longer are voltage
and current edges aligned as in Figs. 1 and 2. More realistic
waveforms are shown in Fig. 5.

The edges of are exactly aligned with the
switching function , so

(25)

The microcontroller which generates the switching waveforms
could easily generate sampling signals that are aligned with

. However, the DRCC algorithm will continue to be

Fig. 5. Sample timing with panel capacitance effects.

Fig. 6. Small-signal equivalent circuit of solar panel connected to a boost con-
verter.

effective at a much higher switching frequency if samples are
aligned with edges of instead.

A study of the small-signal circuit shown in Fig. 6 reveals
the relationship needed to generate sampling signals aligned
with edges in . The resistance in Fig. 6 represents
the incremental resistance of the panel (the reciprocal of the
slope of the I-V curve shown in Fig. 4). Capacitance increases
with voltage while incremental resistance decreases [40]. Over
a broad range near the maximum power point, the panel time
constant is nearly constant. Mono- and polycrystalline sil-
icon panels have been measured in various operating conditions
to have a time constant of about 17 s.

The applied current in Fig. 6 is triangular with a duty ratio
governed by the switching waveform . The appropriate sample
time is when

(26)

A solution of the differential equation that governs the circuit of
Fig. 6 gives a sample time of

(27)

That is, if time is reset to zero at the rising edge of , the next
sample should occur not at (the falling edge of ) but rather
at . Similarly, if time is reset at the falling edge of , re-
place with everywhere in (27) to find the sample
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Fig. 7. Sample time delay as a function of duty ratio.

time that occurs after the next rising edge of . Since the circuit
is small-signal and linear, one equation determines the appro-
priate delay so that all samples align with the edges of .

Equation (27) is too complicated for real-time calculation in
an inexpensive 8- or 16-bit microcontroller. Math operations
include exponentials, a division, and a natural logarithm. In-
stead, a linear fit is adequate. Fig. 7 shows a plot of (27) for

17 s and 40 s. For the experimental system, a
piecewise linear fit was used. Maximum error on the timing was
less than 2%, and the corresponding MPPT error was lower.

B. Implementation and Mode-Switching

An experimental MPPT system was built to demonstrate the
effectiveness of DRCC. The MPPT employed a boost converter
with a 2.6-mH powdered-iron inductor, an IRF3710 MOSFET,
and a MBR1545CT Schottky diode. The solar panel was a So-
larWorld SW50 mono/RD094, with sample terminal character-
istics shown in Fig. 4. The panel is rated for 50 W maximum
output, 21.0 V open-circuit voltage, 3.40 A short-circuit current,
and maximum power point at 16.7 V and 2.99 A. The switching
frequency was set to 25 kHz, a compromise between component
sizes and detectable ripple. At lower frequencies, inductor size
would be excessive, while at higher frequencies, panel capaci-
tance would attenuate and phase-shift voltage ripple measure-
ments. The DRCC algorithm was executed every 20 switching
cycles for low ADC power consumption.

The algorithm was implemented on an MSP430F148. The
MSP430 family from Texas Instruments has a 16-bit fixed-point
core and a variety of peripherals. The primary advantage of
this family is low power consumption, which enables an effec-
tive MPPT for a relatively small panel. The MSP430F148 has
a hardware 8-bit-by-8-bit (8 8) multiplier, a 12-bit ADC, and
several timer channels that can implement pulse-width mod-
ulation. Typical power consumption, including peripherals, is
3.6 mW with a nominal 3-V supply.

Voltage and current ripple are only a few percent of the av-
erage voltage and current. To achieve high signal integrity and
sufficient ADC resolution, each signal was split into a dc com-
ponent and an ac component. The gains on the ac components of

voltage and current were 3.33 times greater and 32 times greater,
respectively, than the gains on the dc components. Sampling
was performed with 74HC4066 switches. Current was sensed
with a LEM LA55-P closed-loop Hall effect sensor with five pri-
mary turns, though a commercial implementation would likely
use a current shunt instead. With this gain and filter configura-
tion, SNR at the ADC inputs was increased by 10 dB for voltage
ripple and 30 dB for current ripple.

As in any gradient-based optimization approach, DRCC
drives the system to a local optimum. A mode-switching al-
gorithm was implemented to improve robustness and overall
performance over the full range of possible operating condi-
tions. For example, becomes nearly flat near short-circuit
of the solar panel, making its monotonicity sensitive to noise.
Multiple maxima of can occur near open-circuit when
several cells are connected in series, particularly under par-
tial shading conditions [32]. Mode switching uses a simple
open-loop control to set up an initial condition near the desired
operating point to achieve global stability at the optimum.

Here, the other mode (besides DRCC) employs the
well-known fractional open-circuit voltage (fractional )
approach, also referred to as constant voltage fraction (CVF)
[41] power tracking. This approximate MPPT technique is
ideal for augmenting DRCC. Over a broad range of operating
conditions, the maximum power point occurs near a character-
istic fraction of the open-circuit voltage . More recent
work [42] has shown that a variable fraction achieves higher
accuracy. Another option is to employ a fractional short-circuit
current approach (fractional ), which was shown in [39]
to be more accurate than fractional . In the present appli-
cation, the objective is to initialize DRCC within the basin of
attraction of the true maximum power point, so the simple CVF
technique is suitable. Once initialized, the control is turned over
to the DRCC process to drive operation to the exact maximum.
Use of a sampled , rather than a fixed voltage, compensates
for temperature variation and panel aging.

The complete algorithm has the following two modes.
1) The CVF process is implemented: the converter is turned

off for a brief predetermined time sufficient for the panel
to reach . At the end of this time, is sampled. Then
the converter is set for the specified voltage fraction and
driven to a target panel voltage .

2) The DRCC algorithm is enabled. Since the initial condi-
tions are near the maximum power point, convergence is
quick (on the order of 10 ms).

In principle, the mode-switching technique can be a one-time
event: DRCC will continue to operate at the maximum once ini-
tialized, and can easily track changes in conditions even on mil-
lisecond time scales. In practice, there is an advantage to having
the sequence repeat after a predetermined time, in case large
charges in operating conditions have occurred. In the experi-
mental system, the CVF time is 240 ms, including 10 ms for
the open-circuit measurement. The DRCC control mode is then
activated; the panel reaches the maximum power point in about
10 ms, and the controller continues to track for about 3 s be-
fore re-initializing with the CVF mode. The CVF time could be
shortened, as long as the time is sufficient for the panel to reach
steady-state. The DRCC time could be extended to minutes or
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Fig. 8. (a) Current, (b) voltage, and (c) power for full, direct sun.

hours, since only large-scale changes will influence its opera-
tion.

C. Experimental Results

Three operating conditions are shown in Figs. 8–10. In all
three, current, voltage, and calculated power are shown. The
timing is aligned so that the left boundary is near the begin-
ning of the open-circuit mode. Voltage quickly converges to the
open-circuit voltage , then is driven to by the CVF
algorithm. This ratio (0.625), which is less than the manufac-
turer’s specified ratio (0.80), was chosen to demonstrate the
large basin of attraction for the DRCC algorithm. Measured
power goes through the maximum power point, stabilizes at
some lower value during the CVF mode, then converges to the
maximum power point under DRCC operation. During the tran-
sient, panel current is not measured, so there is no retained in-
formation about the maximum power point. Any such informa-
tion would quickly become outdated, since the insolation may
change.

For Fig. 8, the panel was oriented towards the sun, and
achieved 69% of rated power. This is the same operating point
as in Fig. 4. For Fig. 9, the panel was turned away from the sun,
to reduce the output power to 24% of rating. Numerical results
for these two experiments are summarized in Table I.

Fig. 10 demonstrates dynamic tracking capability. For this
test, the panel was partially shaded by a tree that was blowing in
the wind. The DRCC algorithm continued to track the maximum
power point. Operating point updates occurred more frequently
than every 1 ms.

VI. CONCLUSION

DRCC, a real-time digital optimization technique, was de-
rived from the analog RCC method. For typical waveforms en-

Fig. 9. (a) Current, (b) voltage, and (c) power for oblique sun.

Fig. 10. (a) Current, (b) voltage, and (c) power for intermittent shading condi-
tions.

countered in switching power converters, a sampling rate tied to
the switching frequency can be used to implement DRCC. Sta-
bility was established. Although the new method superficially
resembles conventional techniques like P&O, DRCC can reach
true steady-state and uses only ripple information that is readily
available in any switching power converter. Like conventional
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TABLE I
SUMMARIZED EXPERIMENTAL RESULTS

RCC, DRCC can be applied to many optimization problems in
power electronics.

DRCC was demonstrated in an MPPT application for photo-
voltaic panels. A mode-switching algorithm that used the frac-
tional method for periodic re-initialization improved robust-
ness and ensured that the MPPT would converge to the global
maximum power point. Tracking accuracy exceeded 98% for di-
rect insolation. An update rate of more than 1 kHz enabled the
system to track maximum power on the time scale of millisec-
onds.
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