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Transformer Leakage Inductance Design
Methodology

Angshuman Sharma and Jonathan W. Kimball
Department of Electrical and Computer Engineering

Missouri University of Science and Technology
Rolla, MO USA

Email: asc4v@mst.edu, kimballjw@mst.edu

Abstract—The leakage inductance exhibited by a transformer
depends on its winding geometry, which generally involves the
selection of several key design parameters in addition to the
winding structure and the interleaving configuration. With few
resources explaining the effects of these design choices on the
observed leakage inductance, numerous trial-and-error iterations
become necessary to realize the desired leakage inductance. This
paper explores more than a hundred winding geometries feasible
in a 2-winding transformer comprising the same magnetic core,
number of turns, and wire gauge, and finds the leakage induc-
tance for each unique design using 2-D finite element method
(FEM) simulations in association with the semi-analytical double-
2-D model. These leakage inductances are plotted and further
analyzed to understand the effects of different design parameters
on the effective leakage inductance. The results presented herein
and the conclusions drawn from this research can serve as
a valuable resource for future design practitioners from both
industry and academia.

Index Terms—Double-2-D model, finite element method
(FEM), leakage inductance, transformer.

I. INTRODUCTION

Transformers are an integral part of power electronic con-
verters where galvanic isolation is a prerequisite besides level
shifting of voltages [1]. Lately, transformers with integrated
magnetics have gained a lot of attention from the power
electronics community. The leakage inductance of these trans-
formers has the capability to replace the series inductor of the
converter if designed appropriately. This scope to reduce cost
and footprint has fuelled the demand for these transformers
for an efficient power conversion process [2, 3, 4].

Designing a magnetically-integrated transformer that meets
the desired series inductance is a two-step process. The first
step involves the general design procedure that is common to
any transformer. Here, the Area Product Method can be used
to find the required core, number of turns, and wire gauge
for a naturally air-cooled transformer [5, 6]. The second step
involves an iterative process where different feasible winding
geometries are tried and tested until the leakage inductance
matches the desired series inductance [7].

The leakage inductance of a transformer is the byproduct
of the magnetic energy stored in the 3-D space in and around
the transformer [2, 8]. For the same magnetic core and number
of turns, the amount of stored energy depends on the selected
winding structure and the interleaving configuration in addition
to some key design parameters, like

1) air gap between primary and secondary winding layers
(inter-winding gap),

2) air gap between two layers of the same winding (inter-
layer gap),

3) air gap between two turns within a layer (inter-turn gap),
and

4) overlapping height of the two windings.
A clear understanding of the outcome of these design

choices is found to be critical for an efficient design process.
While the handbooks on transformer designs share no light
on this additional design step [5, 6], the existing litera-
ture on leakage inductance calculation methods falls short
in deciphering the effects of these design choices on the
observed leakage inductance [9]. As a result, numerous trial-
and-error iterations become necessary to achieve the desired
leakage inductance. This paper attempts to bridge this existing
knowledge gap and make the design process of magnetically-
integrated transformers simpler and more efficient.

The paper begins with the general design of a magnetically-
integrated transformer targeted for an isolated resonant dc-
dc converter, where matching the desired series resonant
inductance can be pivotal to the optimal operation of the
converter. Using the same magnetic core, number of turns, and
wire gauge, section 3 explores more than a hundred feasible
winding geometries and finds the leakage inductance for each
unique design. Section 4 presents and analyzes the results.
Section 5 provides guidance to enable future designers to
realize the desired leakage inductance of any transformer more
efficiently. The paper finally ends with a concluding remark.

II. GENERAL TRANSFORMER DESIGN

Table I shows the specifications of a naturally air-cooled 2-
winding transformer for an isolated resonant dc-dc converter.
Here, the Area Product Method is used to find the required
magnetic core, number of turns, and wire gauge. The area
product Ap (in cm4) which indicates the power handling
capability of a transformer can be calculated using,

Ap =

(
Stot(10

4)

KuKfKjBmaxf

)(8/7)

(1)

Stot =
√
2
(
V1I1 + V2I2

)
(2)
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TABLE I
TRANSFORMER SPECIFICATIONS

Output power 1 kVA
Input voltage (rms) 340 V

Turns ratio 1
Operating frequency 220 kHz

Duty cycle 0.5
Maximum flux density 0.1 T

Maximum temperature rise 50◦ C

where Stot is the total apparent power (in VA), Ku is the
window fill factor, Kf is the waveform coefficient, and Kj

is the temperature-rise constant. Here, it is assumed that
Ku = 0.35, Kf = 4.44 for sinusoidal currents, and Kj = 534
for the target ferrite EE core to stay below the specified
temperature rise limit. The magnetic core selected to construct
the transformer should satisfy WaAc ≥ Ap, where the area
product WaAc can be obtained from the datasheet of the core.
The number of primary turns needed to operate the transformer
can be calculated using Faraday’s law,

N1 =
V1(10

4)

KfBmaxfAc
(3)

where Ac is the cross-sectional area of the core (in cm2). N1

should be a natural number. Finally, the peak current density
(in A/cm2) inside the winding window of the selected core
can be calculated using,

J =
Stot(10

4)

KuKfBmaxf(WaAc)
(4)

The current density of the selected wire gauge should be
less than J calculated in (4) to meet the specified temper-
ature rise limit. Table 2 summarizes the results of the Area
Product Method. Two ETD 39 cores from EPCOS with the
corresponding bobbin and AWG 19 enameled copper wire
are selected to construct the transformer. The formulations for
other parameters like core and copper losses and temperature
rise can be found in [6, 10].

III. LEAKAGE INDUCTANCE DESIGN

The leakage inductance of a transformer depends on its
winding geometry, as explained in section I. For the selected
core, number of turns, and wire gauge, the two most popular
winding structures seen in 2-winding EE-core transformers are
depicted in Figs. 1 (a) and (b), where the secondary winding
is either wound over or below the primary winding [8]. In the
first structure, the 40 turns per winding are arranged in two
layers of 20 turns each. The two primary (P) and secondary
(S) layers can then be arranged in three unique interleaving
configurations—PPSS as represented in Fig. 1 (a), PSPS as
represented in Fig. 1 (c), and PSSP as represented in Fig. 1 (d).
In the second P-S structure, the 40 turns per winding are
arranged in 8 layers of 5 turns each. Interleaving is feasible
but not pursued to avoid redundancy.

For a particular winding structure and interleaving config-
uration, the leakage inductance again depends on four critical

TABLE II
RESULTS OF THE AREA-PRODUCT METHOD

Minimum area product 1.65 cm4

Selected core ETD 39 (WaAc = 2.18 cm4)
Peak current density 484 A/cm2

Selected wire gauge AWG 19 (J = 450 A/cm2)
Primary turns 40

Secondary turns 40
Core loss 1.27 W

DC copper loss 1.24 W
Temperature rise 34.9◦ C

DC Efficiency 99.75 %

TABLE III
IDEAL VALUES OF DIFFERENT PARAMETERS

Parameter
Value (mm)

PPSS PSPS PSSP P-S
dl 0.2 0.2 0.2 0.2
dw 0.2 0.2 0.2 0.3
dt 0.1 0.2 0.2 0.2
dg 0 1.8 1.8 0

design parameters: inter-winding gap dw, inter-layer gap dl,
inter-turn gap dt, and height offset dg , as indicated in Fig. 1.
Sweeping these parameters within their reasonable range can
result in countless winding geometries and as many leakage
inductances. In order to study these geometries, a core with
30 % larger area product is chosen. For the four structures in
Fig. 1, the ideal values of different parameters are presented
in Table III. Unless specified, these parameters assume the
given values. Fig. 2 shows the magnetomotive force (MMF)
distribution in these structures, where the MMF is constant
across the inter-layer and inter-winding gaps and linearly
varying across the winding cross-sections.

In this paper, the leakage inductances are evaluated using 2-
D finite element model (FEM) simulations in association with
the double-2-D model [2] to reduce computation time. At first,
the inside window (IW) and the outside window (OW) planes
of each transformer are modeled in COMSOL Multiphysics
to find the magnetic energy per unit length E′ across these
planes. Then E′ is scaled to find the leakage inductance per
unit length L′ = 2E′/I21 across each plane, where I1 is the
primary current. Finally, the leakage inductance is calculated
using the semi-analytical double-2-D model, given by

Llk,double-2-D = sc (L
′
(IW)d(IW) + L′

(OW)d(OW)) (5)

sc =

{
1, core-type transformer
2, shell-type transformer

where d is the partial leakage length. Fig. 3 illustrates the
concept of the double-2-D model for core-type (UU and UI
core-type) and shell-type (EE and EI core-type) transformers,
where l is the leakage radius obtained by averaging E′

across the planes, and θ is the leakage angle. For EE cores
with a circular winding leg having a radius rc, the leakage
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Fig. 1. Winding structures: (a) PPSS, (b) P-S, (c) PSPS, (d) PSSP.

angles across the IW, OW and transition (TR) regions can be
calculated using,

θ(IW) = 2arcsin

(
rc

w + rc

)
(6)

θ(TR) = arcsin

(
2rc

l(IW) + l(OW)

)
− θ(IW)

2
(7)

θ(OW) =
2π − sc(θ(IW) + 2θ(TR))

sc
(8)

where w is the width of the IW plane. Finally, the partial
leakage lengths can be calculated using,

d(IW) = l(IW)
(
θ(IW) + θ(TR)

)
(9)

d(OW) = l(OW)
(
θ(OW) + θ(TR)

)
(10)

Detailed mathematical formulations of the double-2-D model
can be found in [2]. High-frequency analysis of the leakage
inductance is avoided in light of multi-strand litz wires. Fig. 2. MMF distribution in different structures.
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Fig. 3. Double-2-D model: (a) shell-type transformer, (b) core-type trans-
former [2].

IV. RESULTS

Figs. 4, 5 and 6 plot the leakage inductances resulting from
the parametric sweeps performed on the PPSS structure. On
the other hand, Figs. 8, 9 and 10 plot the leakage inductances
corresponding to the parametric sweeps performed on the
PSPS, PSSP and P-S structures, respectively. Detailed discus-
sions of these plots are provided in the following subsections.
Additionally, for each winding structure, the FEM-generated
magnetic energy density across the IW plane assuming the
ideal parameter values in Table III is shown in Fig. 11.

A. PPSS structure

In Fig. 4, the leakage inductance increases very linearly
with dl1, dl2 and dw because of the constant, non-zero MMFs
across these air gaps and a linear increase in the leakage radii.
The increase in leakage inductance with dl1 or dl2 is similar
but much lower than that with dw because the MMFs across
dl1 and dl2 are similar but lower than that across dw, as seen
in Fig. 2. If all three air gaps are increased equally, then
the net increase in leakage inductance follows a slope that
is equivalent to the sum of the slopes of the first three curves.

In Fig. 5, an equal increase in dt1 and dt2 decreases the
leakage inductance because of a reduction in magnetic energy
density in the inter-turn gaps as the windings start spreading
out along the layers. An equal change in dg1 and dg2 hardly
affects the leakage inductance, as seen in Fig. 6. However,
increasing dg1 only increases the leakage inductance somewhat
quadratically. This increase is entirely due to the increase
in the radial component of magnetic field intensity, which
otherwise is negligible when there is a complete overlap
between the two winding heights.

Fig. 4. Variation of dl1, dl2 and dw in PPSS.

Fig. 5. Variation of dt1 and dt2 in PPSS.

Fig. 6. Variation of dg1 and dg2 in PPSS.

B. PSPS structure

In Fig. 8, the increase in leakage inductance with dw1 or
dw3 is similar and almost linear. This is because the MMFs
across dw1 and dw3 are equal, constant and non-zero, and
the increase in leakage radii with dw1 or dw3 is also linear.
The increase in leakage inductance with dw2 is trivial because
the MMF across dw2 is negligible and the small increase in
leakage inductance is a result of the increase in leakage radii
only. If all three air gaps are increased equally, the net increase
in leakage inductance is very linear and it follows a slope that
is equivalent to the sum of the slopes of the first three curves.
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Fig. 7. Experimental prototype of the transformer with PPSS winding
structure.

C. PSSP structure

In Fig. 9, the increase in leakage inductance with dw1 or
dw2 is very linear and identical because the MMFs across
dw1 and dw2 are equal, constant and non-zero. The increase
in leakage radii with dw1 or dw2 is also linear. As expected,
the small increase in leakage inductance with dl is due to the
increase in leakage radii only. Similar to the PSPS structure,
if all three air gaps are increased equally, the net increase
in leakage inductance is linear and it follows a slope that is
equivalent to the sum of the slopes of the first three curves.

D. P-S structure

In Fig. 10, the leakage inductance increases almost linearly
with dw because the MMF across dw is constant and non-zero.
This case is somewhat similar to sweeping dw in the PPSS
structure. Since the P-S structure has 8P-8S uninterleaved
layers, the MMF across dw is very high, as seen in Fig. 2,
thereby resulting in a steep increase in the leakage inductance.
The leakage radii, however, remain constant. Saturation may
show up when dw is very large.

E. Experimental results

To demonstrate the efficacy of the leakage inductance design
and calculation method explained in section III, an experimen-
tal prototype of the PPSS structured transformer is built in the
lab. The measured leakage inductance is found to be 8.3 µH
compared to the simulated value of 8.27 µH.

V. DISCUSSION

Results presented herein restate the fact that the leakage
inductance of a transformer depends on its winding geometry.
Ideally, there can be countless possibilities to wind a trans-
former, but not all winding geometries will result in the desired
leakage inductance. Unfortunately, there is no mathematical
formulation to reach the desired leakage inductance in a single
step. Hence, a few iterations may be essential to find the
appropriate winding geometry. Nevertheless, to make future
leakage inductance designs simpler and more efficient, some
key observations from this research are provided below:

Fig. 8. Variation of dw1, dw2 and dw3 in PSPS.

Fig. 9. Variation of dw1, dw2 and dl in PSSP.

Fig. 10. Variation of dw in P-S.

1) Interleaving of layers can reduce the effective leakage
inductance significantly.

2) Alternately arranged P and S layers typically give the
smallest leakage inductance.

3) For higher leakage inductance, it is more important to
have more layers comprising fewer conductors than fewer
layers comprising more conductors.

4) Selecting a larger core provides more room for adjusting
the different gaps when a large leakage inductance is in
demand.

5) Most of the leakage energy is stored in the inter-winding
gap; so varying this gap can help in making any large
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Fig. 11. Magnetic energy density (J/m3) in the transformer winding window: (a) PPSS, (b) P-S, (c) PSPS, (d) PSSP.

adjustments in the leakage inductance.
6) The leakage inductance varies linearly with the inter-

winding gap.
7) The increase in leakage inductance is very linear and

notable when all inter-layer and inter-winding gaps are
increased by the same amount.

8) Offsetting the height of one of the windings can also
increase the leakage inductance.

9) For small adjustments, changing the inter-turn gap can
help if done for both windings.

10) For the smallest adjustments, the inter-layer gap can be
modified.

VI. CONCLUSION

In this paper, a 1 kVA, 340/340 V, 220 kHz, 2-winding trans-
former with integrated magnetics is designed for a resonant
dc-dc converter using the Area Product Method. Two ETD 39
ferrite cores and 40 turns of enameled AWG 19 wires per
winding are selected for constructing the transformer. Since
the leakage inductance depends on the winding geometry,
four different winding structures including three interleaved
configurations are explored. Results show that with the same
ferrite core, number of turns, and wire gauge, a leakage
inductance between 1.9 and 122.1 µH is achievable—a span of
almost two orders of magnitude. One of the winding structure
is also modeled experimentally. Additionally, four key design
parameters are investigated. Sweeping these parameters across
their respective range shows fascinating trends in the effective
leakage inductance. These observations are recorded to help
future design practitioners in realizing the desired leakage
inductance with fewer trial-and-error iterations.
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