166 research outputs found

    Ancient DNA Resolves Identity and Phylogeny of New Zealand's Extinct and Living Quail (Coturnix sp.)

    Get PDF
    BACKGROUND: The New Zealand quail, Coturnix novaezealandiae, was widespread throughout New Zealand until its rapid extinction in the 1870's. To date, confusion continues to exist concerning the identity of C. novaezealandiae and its phylogenetic relationship to Coturnix species in neighbouring Australia, two of which, C. ypsilophora and C. pectoralis, were introduced into New Zealand as game birds. The Australian brown quail, C. ypsilophora, was the only species thought to establish with current populations distributed mainly in the northern part of the North Island of New Zealand. Owing to the similarities between C. ypsilophora, C. pectoralis, and C. novaezealandiae, uncertainty has arisen over whether the New Zealand quail is indeed extinct, with suggestions that remnant populations of C. novaezealandiae may have survived on offshore islands. METHODOLOGY/PRINCIPAL FINDINGS: Using fresh and historical samples of Coturnix sp. from New Zealand and Australia, DNA analysis of selected mitochondrial regions was carried out to determine phylogenetic relationships and species status. Results show that Coturnix sp. specimens from the New Zealand mainland and offshore island Tiritiri Matangi are not the New Zealand quail but are genetically identical to C. ypsilophora from Australia and can be classified as the same species. Furthermore, cytochrome b and COI barcoding analysis of the New Zealand quail and Australia's C. pectoralis, often confused in museum collections, show that they are indeed separate species that diverged approximately 5 million years ago (mya). Gross morphological analysis of these birds suggests a parallel loss of sustained flight with very little change in other phenotypic characters such as plumage or skeletal structure. CONCLUSION/SIGNIFICANCE: Ancient DNA has proved invaluable for the detailed analysis and identification of extinct and morphologically cryptic taxa such as that of quail and can provide insights into the timing of evolutionary changes that influence morphology

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    mTORC1-S6K Activation by Endotoxin Contributes to Cytokine Up-Regulation and Early Lethality in Animals

    Get PDF
    Background: mTORC1 (mammalian target of rapamycin complex 1) activation has been demonstrated in response to endotoxin challenge, but the mechanism and significance are unclear. We investigated the effect of mTORC1 suppression in an animal model of endotoxemia and in a cellular model of endotoxin signaling. Methodology/Principal Findings: Mice were treated with the mTORC1 inhibitor rapamycin or vehicle prior to lethal endotoxin challenge. Mortality and cytokine levels were assessed. Cultured macrophage-like cells were challenged with endotoxin with or without inhibitors of various pathways known to be upstream of mTORC1. Activated pathways, including downstream S6K pathway, were assessed by immunoblots. We found that mTORC1-S6K suppression by rapamycin delayed mortality of mice challenged with lethal endotoxin, and was associated with dampened circulating levels of VEGF, IL-1b, IFN-c and IL-5. Furthermore, in vitro cellular studies demonstrated that LPS (lipopolysaccharide) activation of mTORC1-S6K still occurs in the presence of PI3K-Akt inhibition alone, but can be suppressed by concurrent inhibition of PI3K-Akt and MEK-ERK pathways. Conclusions/Significance: We conclude that cellular activation of mTORC1-S6K contributes to cytokine up-regulation an

    Homoplastic microinversions and the avian tree of life

    Get PDF
    Background: Microinversions are cytologically undetectable inversions of DNA sequences that accumulate slowly in genomes. Like many other rare genomic changes (RGCs), microinversions are thought to be virtually homoplasyfree evolutionary characters, suggesting that they may be very useful for difficult phylogenetic problems such as the avian tree of life. However, few detailed surveys of these genomic rearrangements have been conducted, making it difficult to assess this hypothesis or understand the impact of microinversions upon genome evolution. Results: We surveyed non-coding sequence data from a recent avian phylogenetic study and found substantially more microinversions than expected based upon prior information about vertebrate inversion rates, although this is likely due to underestimation of these rates in previous studies. Most microinversions were lineage-specific or united well-accepted groups. However, some homoplastic microinversions were evident among the informative characters. Hemiplasy, which reflects differences between gene trees and the species tree, did not explain the observed homoplasy. Two specific loci were microinversion hotspots, with high numbers of inversions that included both the homoplastic as well as some overlapping microinversions. Neither stem-loop structures nor detectable sequence motifs were associated with microinversions in the hotspots. Conclusions: Microinversions can provide valuable phylogenetic information, although power analysis indicate

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon
    corecore