112 research outputs found

    MR400: Assessing Compliance with BMPs on Harvested Sites in Maine: Final Report

    Get PDF
    The research was designed to help answer three questions: (1) What are the documented types of impacts on water quality from forestry activities in Maine? (2) Do timber harvesters use the best management practices recommended by the state to control water pollution? (3) Are these practices effective when they are used?https://digitalcommons.library.umaine.edu/aes_miscreports/1025/thumbnail.jp

    TB153: A Long-Term Study of an Oak Pine Forest Ecosystem: Techniques Manual for the Holt Research Forest

    Get PDF
    The manual is a compilation of the study techniques used for the long-term forest ecosystem research project at the Holt Research Forest in Arrowsic, Maine, plus brief evaluations of each method\u27s advantages and drawbacks. It is based on 12 years of work by a team of three university professors, an associate scientist who has lived on the forest since 1983, a research assistant, several graduate students, and numerous undergraduate field assistants. We hope this manual will be useful to other researchers planning, or already involved in, other forest ecosystem studies.https://digitalcommons.library.umaine.edu/aes_techbulletin/1053/thumbnail.jp

    Design of the PIXIE Adiabatic Demagnetization Refrigerators

    Get PDF
    The Primordial Inflation Explorer (PIXIE) is a proposed mission to densely map the polarization of the cosmic microwave background. It will operate in a scanning mode from a sun-synchronous orbit, using low temperature detectors (at 0.1 K) and located inside a teslescope that is cooled to approximately 2.73 K - to match the background temperature. A mechanical cryocooler operating at 4.5 K establishes a low base temperature from which two adiabatic demagnetization refrigerator (ADR) assemblies will cool the telescope and detectors. To achieve continuous scanning capability, the ADRs must operate continuously. Complicating the design are two factors: 1) the need to systematically vary the temperature of various telescope components in order to separate the small polarization signal variations from those that may arise from temperature drifts and changing gradients within the telescope, and 2) the orbital and monthly variations in lunar irradiance into the telescope barrels. These factors require the telescope ADR to reject quasi-continuous heat loads of 2-3 millwatts, while maintaining a peak heat reject rate of less than 12 milliwatts. The detector heat load at 0.1 K is comparatively small at 1-2 microwatts. This paper will describe the 3-stage and 2-stage continuous ADRs that will be used to meet the cooling power and temperature stability requirements of the PIXIE detectors and telescope

    MP745: A Long-Term Study of an Oak Pine Forest Ecosystem: A Brief Overview of the Holt Research Forest

    Get PDF
    This publication provides an overview of the long-term forest ecosystem project at the Holt Research Forest in Arrowsic, Maine. It is based on nearly 16 years of work by an interdisciplinary team from the College of Natural Sciences, Forestry, and Agriculture, including faculty, professional staff, visiting scientists, University of Maine graduate students, and undergraduate field assistants. We hope this publication will be useful to other researchers, to our workshop participants, and to others interested in forest ecosystem science.https://digitalcommons.library.umaine.edu/aes_miscpubs/1029/thumbnail.jp

    The Iowa Homemaker vol.3, no.3-4

    Get PDF
    Table of Contents The Architectural Design of a Home by Allen Holmes Kimball, page 1 “For a Man’s House Is His Castle” by Alda Wilson, page 2 The Economics of Consumption compiled by John E. Brindley, page 3 Sunfast and Tubfast Materials by Pearl Apland, page 5 On Our Street by Juanita J. Beard, page 6 Who Is Responsible for the Child? by Orange H. Cessna, page 7 Summer Suppers by N. Beth Bailey, page 8 Vacation First Aid by Dr. Mary Sheldon, page 9 Episodes Concerning Evolution of Home Economics by Ruth Elaine Wilson, page 10 Extravagant Economics by Blanche Ingersoll, page 11 Breakfast Bridge by Eleanor Murray, page 12 Veishea Celebrates First Birthday by Helen G. Lamb, page 1

    The Milky Way Tomography With SDSS. III. Stellar Kinematics

    Get PDF
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r 20 degrees). We find that in the region defined by 1 kpc < Z < 5 kpc and 3 kpc < R < 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z < 1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (< 100 pc), we detect a multi-modal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity-ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and the Large Synoptic Survey Telescope.NSF AST-615991, AST-0707901, AST-0551161, AST-02-38683, AST-06-07634, AST-0807444, PHY05-51164NASA NAG5-13057, NAG5-13147, NNXO-8AH83GPhysics Frontier Center/Joint Institute for Nuclear Astrophysics (JINA) PHY 08-22648U.S. National Science FoundationMarie Curie Research Training Network ELSA (European Leadership in Space Astrometry) MRTN-CT-2006-033481Fermi Research Alliance, LLC, United States Department of Energy DE-AC02-07CH11359Alfred P. Sloan FoundationParticipating InstitutionsJapanese MonbukagakushoMax Planck SocietyHigher Education Funding Council for EnglandMcDonald Observator

    The Milky Way Tomography with SDSS: III. Stellar Kinematics

    Full text link
    We study Milky Way kinematics using a sample of 18.8 million main-sequence stars with r<20 and proper-motion measurements derived from SDSS and POSS astrometry, including ~170,000 stars with radial-velocity measurements from the SDSS spectroscopic survey. Distances to stars are determined using a photometric parallax relation, covering a distance range from ~100 pc to 10 kpc over a quarter of the sky at high Galactic latitudes (|b|>20 degrees). We find that in the region defined by 1 kpc <Z< 5 kpc and 3 kpc <R< 13 kpc, the rotational velocity for disk stars smoothly decreases, and all three components of the velocity dispersion increase, with distance from the Galactic plane. In contrast, the velocity ellipsoid for halo stars is aligned with a spherical coordinate system and appears to be spatially invariant within the probed volume. The velocity distribution of nearby (Z<1Z<1 kpc) K/M stars is complex, and cannot be described by a standard Schwarzschild ellipsoid. For stars in a distance-limited subsample of stars (<100 pc), we detect a multimodal velocity distribution consistent with that seen by HIPPARCOS. This strong non-Gaussianity significantly affects the measurements of the velocity ellipsoid tilt and vertex deviation when using the Schwarzschild approximation. We develop and test a simple descriptive model for the overall kinematic behavior that captures these features over most of the probed volume, and can be used to search for substructure in kinematic and metallicity space. We use this model to predict further improvements in kinematic mapping of the Galaxy expected from Gaia and LSST.Comment: 90 pages, 26 figures, submitted to Ap

    The Primordial Inflation Polarization Explorer (PIPER): Current Status and Performance of the First Flight

    Get PDF
    The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument optimized to measure the polarization of the CMB at large angular scales. It will map 85% of the sky over a series of conventional balloon flights from the Northern and Southern hemispheres, measuring the B-mode polarization power spectrumover a range of multipoles from 2-300 covering both the reionization bump and the recombination peak, with sensitivity to measure the tensor-to-scalar ratio down to r = 0.007. PIPER will observe in four frequency bands centered at 200, 270, 350, and 600 GHz to characterize dust foregrounds. The instrument has background-limited sensitivity provided by fully cryogenic (1.7 K) optics focusing the sky signal onto kilo-pixel arrays of time-domain multiplexed Transition-Edge Sensor (TES) bolometers held at 100 mK. Polarization sensitivity and systematiccontrol are provided by front-end Variable-delay Polarization Modulators (VPMs). PIPER had its engineering flight in October 2017 from Fort Sumner, New Mexico. This papers outlines the major components in the PIPER system discussing the conceptual design as well as specific choices made for PIPER. We also report on the results of the engineering flight, looking at the functionality of the payload systems, particularly VPM, as well as pointing out areas of improvement
    corecore