4,432 research outputs found
Reflections on Tiles (in Self-Assembly)
We define the Reflexive Tile Assembly Model (RTAM), which is obtained from
the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across
their horizontal and/or vertical axes. We show that the class of directed
temperature-1 RTAM systems is not computationally universal, which is
conjectured but unproven for the aTAM, and like the aTAM, the RTAM is
computationally universal at temperature 2. We then show that at temperature 1,
when starting from a single tile seed, the RTAM is capable of assembling n x n
squares for n odd using only n tile types, but incapable of assembling n x n
squares for n even. Moreover, we show that n is a lower bound on the number of
tile types needed to assemble n x n squares for n odd in the temperature-1
RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1.
Finally, we give preliminary results toward the classification of which finite
connected shapes in Z^2 can be assembled (strictly or weakly) by a singly
seeded (i.e. seed of size 1) RTAM system, including a complete classification
of which finite connected shapes be strictly assembled by a "mismatch-free"
singly seeded RTAM system.Comment: New results which classify the types of shapes which can
self-assemble in the RTAM have been adde
On electrostatic and Casimir force measurements between conducting surfaces in a sphere-plane configuration
We report on measurements of forces acting between two conducting surfaces in
a spherical-plane configuration in the 35 nm-1 micrometer separation range. The
measurements are obtained by performing electrostatic calibrations followed by
a residual analysis after subtracting the electrostatic-dependent component. We
find in all runs optimal fitting of the calibrations for exponents smaller than
the one predicted by electrostatics for an ideal sphere-plane geometry. We also
find that the external bias potential necessary to minimize the electrostatic
contribution depends on the sphere-plane distance. In spite of these anomalies,
by implementing a parametrixation-dependent subtraction of the electrostatic
contribution we have found evidence for short-distance attractive forces of
magnitude comparable to the expected Casimir-Lifshitz force. We finally discuss
the relevance of our findings in the more general context of Casimir-Lifshitz
force measurements, with particular regard to the critical issues of the
electrical and geometrical characterization of the involved surfaces.Comment: 22 pages, 15 figure
Recommended from our members
State of the California current 2013-14: El niño looming
In 2013, the California current was dominated by strong coastal upwelling and high productivity. Indices of total cumulative upwelling for particular coastal locations reached some of the highest values on record. Chlorophyll a levels were high throughout spring and summer. Catches of upwelling-related fish species were also high. After a moderate drop in upwelling during fall 2013, the California current system underwent a major change in phase. Three major basin-scale indicators, the PDO, the NPGO, and the ENSO-MEI, all changed phase at some point during the winter of 2013/14. The PDO changed to positive values, indicative of warmer waters in the North Pacific; the NPGO to negative values, indicative of lower productivity along the coast; and the MEI to positive values, indicative of an oncoming El Niño. Whereas the majority of the California Current system appears to have transitioned to an El Niño state by August 2014, based on decreases in upwelling and chlorophyll a concentration, and increases in SST, there still remained pockets of moderate upwelling, cold water, and high chlorophyll a biomass at various central coast locations, unlike patterns seen during the more major El Niños (e.g., the 97-98 event). Catches of rockfish, market squid, euphausiids, and juvenile sanddab remained high along the central coast, whereas catches of sardine and anchovy were low throughout the CCS. 2014 appears to be heading towards a moderate El Niño state, with some remaining patchy regions of upwellingdriven productivity along the coast. Superimposed on this pattern, three major regions have experienced possibly non-El Niño-related warming since winter: the Bering Sea, the Gulf of Alaska, and offshore of southern California. It is unclear how this warming may interact with the predicted El Niño, but the result will likely be reduced growth or reproduction for many key fisheries species
The conundrum of dystonia in essential tremor patients: how does one classify these cases?
Abstract Background: The relationship between essential tremor (ET) and dystonia has been long debated and the boundaries between these disorders remain unclear. Here, we highlight the diagnostic uncertainty that can arise when observing dystonic postures in patients who have received ET diagnoses. Methods: An international panel of seven movement disorders neurologists from five countries reviewed the clinical history and videotaped neurological examinations of five individuals diagnosed with ET who also had various features of dystonia on neurological examination. Experts were instructed to assign diagnoses and provide their rationale for diagnostic assignments. Results: The five cases each exhibited a variety of abnormal postures. These were observed by all experts, and interpreted as dystonic postures by six experts. According to six of seven experts, all five cases had ET. One expert classified all cases as dystonic tremor rather than ET. One case had cervical dystonia, and five of seven experts assigned dual diagnoses of ET and dystonia in that case. The assignment of dystonia diagnoses was variable among the other four cases, with two to three experts assigning this diagnosis in each case, underscoring differences in diagnostic interpretation of dystonic postures on examination. Conclusions: This study draws attention to some of the differences between experts in assigning diagnoses of ET or dystonia to individuals with ET and abnormal postures. The goal here was not necessarily to build consensus, but to raise issues, highlight areas of uncertainty, and identify areas of common vs. differentiated thought. Several questions for additional research were also raised
Recommended from our members
State of the California current 2012-13: No such thing as an “average” year
This report reviews the state of the California Current System (CCS) between winter 2012 and spring 2013, and includes observations from Washington State to Baja California. During 2012, large-scale climate modes indicated the CCS remained in a cool, productive phase present since 2007. The upwelling season was delayed north of 42°N, but regions to the south, especially 33° to 36°N, experienced average to above average upwelling that persisted throughout the summer. Contrary to the indication of high production suggested by the climate indices, chlorophyll observed from surveys and remote sensing was below average along much of the coast. As well, some members of the forage assemblages along the coast experienced low abundances in 2012 surveys. Specifically, the concentrations of all lifestages observed directly or from egg densities of Pacific sardine, Sardinops sagax, and northern anchovy, Engraulis mordax, were less than previous years’ survey estimates. However, 2013 surveys and observations indicate an increase in abundance of northern anchovy. During winter 2011/2012, the increased presence of northern copepod species off northern California was consistent with stronger southward transport. Krill and small-fraction zooplankton abundances, where examined, were generally above average. North of 42°N, salps returned to typical abundances in 2012 after greater observed concentrations in 2010 and 2011. In contrast, salp abundance off central and southern California increased after a period of southward transport during winter 2011/2012. Reproductive success of piscivorous Brandt’s cormorant, Phalacrocorax penicillatus, was reduced while planktivorous Cassin’s auklet, Ptychoramphus aleuticus was elevated. Differences between the productivity of these two seabirds may be related to the available forage assemblage observed in the surveys. California sea lion pups from San Miguel Island were undernourished resulting in a pup mortality event perhaps in response to changes in forage availability. Limited biological data were available for spring 2013, but strong winter upwelling coastwide indicated an early spring transition, with the strong upwelling persisting into early summer
Cosmic-ray strangelets in the Earth's atmosphere
If strange quark matter is stable in small lumps, we expect to find such
lumps, called ``strangelets'', on Earth due to a steady flux in cosmic rays.
Following recent astrophysical models, we predict the strangelet flux at the
top of the atmosphere, and trace the strangelets' behavior in atmospheric
chemistry and circulation. We show that several strangelet species may have
large abundances in the atmosphere; that they should respond favorably to
laboratory-scale preconcentration techniques; and that they present promising
targets for mass spectroscopy experiments.Comment: 28 pages, 4 figures, revtex
The mu problem and sneutrino inflation
We consider sneutrino inflation and post-inflation cosmology in the singlet
extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that
supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is
broken by the intermediate-scale VEVs of two flaton fields, which are
determined by the interplay between radiative flaton soft masses and higher
order terms. Then, from the flaton VEVs, we obtain the correct mu term and the
right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH
sneutrino with non-minimal gravity coupling drives inflation, thanks to the
same flaton coupling giving rise to the RH neutrino mass. After inflation,
extra vector-like states, that are responsible for the radiative breaking of
the PQ symmetry, results in thermal inflation with the flaton field, solving
the gravitino problem caused by high reheating temperature. Our model predicts
the spectral index to be n_s\simeq 0.96 due to the additional efoldings from
thermal inflation. We show that a right dark matter abundance comes from the
gravitino of 100 keV mass and a successful baryogenesis is possible via
Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE
Ultrafast optical control of entanglement between two quantum dot spins
The interaction between two quantum bits enables entanglement, the
two-particle correlations that are at the heart of quantum information science.
In semiconductor quantum dots much work has focused on demonstrating single
spin qubit control using optical techniques. However, optical control of
entanglement of two spin qubits remains a major challenge for scaling from a
single qubit to a full-fledged quantum information platform. Here, we combine
advances in vertically-stacked quantum dots with ultrafast laser techniques to
achieve optical control of the entangled state of two electron spins. Each
electron is in a separate InAs quantum dot, and the spins interact through
tunneling, where the tunneling rate determines how rapidly entangling
operations can be performed. The two-qubit gate speeds achieved here are over
an order of magnitude faster than in other systems. These results demonstrate
the viability and advantages of optically controlled quantum dot spins for
multi-qubit systems.Comment: 24 pages, 5 figure
Ultra-High Energy Neutrino Fluxes: New Constraints and Implications
We apply new upper limits on neutrino fluxes and the diffuse extragalactic
component of the GeV gamma-ray flux to various scenarios for ultra high energy
cosmic rays and neutrinos. As a result we find that extra-galactic top-down
sources can not contribute significantly to the observed flux of highest energy
cosmic rays. The Z-burst mechanism where ultra-high energy neutrinos produce
cosmic rays via interactions with relic neutrinos is practically ruled out if
cosmological limits on neutrino mass and clustering apply.Comment: 10 revtex pages, 9 postscript figure
VORTICITY, SHOCKS, AND MAGNETIC FIELDS IN SUBSONIC, ICM- LIKE TURBULENCE
We analyze data from high resolution simulations of the generation of compressible, MHD turbulence with properties chosen to resemble conditions in galaxy clusters. In particular, the flow is driven to have turbulence Mach number M-t similar to 1/2 in an isothermal medium with an initially very weak, uniform seed magnetic field (beta = P-g/P-B= 10(6)). Since cluster turbulence is likely to result from a mix of sheared (solenoidal) and compressive forcing processes, we examine the distinct turbulence properties for both cases. In one set of simulations velocity forcing is entirely solenoidal (del . delta u= 0), while in the other it is entirely compressive (del x delta u = 0). Both cases develop a mixture of solenoidal and compressive turbulent motions, since each generates the other. The development of compressive turbulent motions leads to shocks, even when the turbulence is solenoidally forced and subsonic. Shocks, in turn, produce and amplify vorticity, which is especially important in compressively forced turbulence. To clarify those processes we include a pair of appendices that look in detail at vorticity evolution in association with shocks. From our simulation analyses we find that magnetic fields amplified to near saturation levels in predominantly solenoidal turbulence can actually enhance vorticity on small scales by concentrating and stabilizing shear. The properties, evolution rates, and relative contributions of the kinetic and magnetic turbulent elements depend strongly on the character of the forcing. Specifically, shocks are stronger, but vorticity evolution and magnetic field amplification are slower and weaker when the turbulence is compressively forced. We identify a simple relation to estimate characteristic shock strengths in terms of the turbulence Mach number and the character of the forcing. Our results will be helpful in understanding flow motions in galaxy clustersopen10
- …