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ABSTRACT

We analyze data from high resolution simulations of the generation of compressible, MHD turbulence with
properties chosen to resemble conditions in galaxy clusters. In particular, the flow is driven to have turbulence
Mach number  ~ 1 2t in an isothermal medium with an initially very weak, uniform seed magnetic field
(b = =P P 10g B

6). Since cluster turbulence is likely to result from a mix of sheared (solenoidal) and compressive
forcing processes, we examine the distinct turbulence properties for both cases. In one set of simulations velocity
forcing is entirely solenoidal ( d =u 0· ), while in the other it is entirely compressive ( d ´ =u 0). Both cases
develop a mixture of solenoidal and compressive turbulent motions, since each generates the other. The
development of compressive turbulent motions leads to shocks, even when the turbulence is solenoidally forced
and subsonic. Shocks, in turn, produce and amplify vorticity, which is especially important in compressively forced
turbulence. To clarify those processes we include a pair of appendices that look in detail at vorticity evolution in
association with shocks. From our simulation analyses we find that magnetic fields amplified to near saturation
levels in predominantly solenoidal turbulence can actually enhance vorticity on small scales by concentrating and
stabilizing shear. The properties, evolution rates, and relative contributions of the kinetic and magnetic turbulent
elements depend strongly on the character of the forcing. Specifically, shocks are stronger, but vorticity evolution
and magnetic field amplification are slower and weaker when the turbulence is compressively forced. We identify a
simple relation to estimate characteristic shock strengths in terms of the turbulence Mach number and the character
of the forcing. Our results will be helpful in understanding flow motions in galaxy clusters.

Key words: galaxies: clusters: intracluster medium – intergalactic medium – magnetic fields – magnetohy-
drodynamics (MHD) – turbulence

1. INTRODUCTION

Most of the baryonic matter in galaxy clusters and cosmic
filaments exists in the form of very diffuse plasma. These
media, both the hotter, intracluster medium (ICM) and cooler,
Warm–Hot Intergalactic Medium,4 are very dynamical envir-
onments with active “weather” driven by ongoing accretion,
substructure motions, occasional, violent merger activity, and
at times large energy inputs from starburst-driven galactic
winds and very fast outflows from active galactic nuclei
(AGNs) (Brunetti & Jones 2014, and references therein).
Simulations predict, consequently, that ICMs contain large-
scale flows (“ICM winds”) at a fair fraction of the local sound
speed, and both simulations and observations indicate that they
contain weak-to-moderate-strength shocks, contact discontinu-
ities (known in clusters as “cold fronts”), and strong bulk shear.
Such flows should become turbulent. ICM turbulence is
manifest in simulations of cosmic structure formation (e.g.,
Ryu et al. 2003; Fujita et al. 2004; Vazza et al. 2009, 2014;
Ruszkowski & Oh 2011; Xu et al. 2011; Miniati 2014) and
there is observational evidence in clusters that also supports
this (e.g., Churazov et al. 2004, 2012; Shuecker et al. 2004;
Bonafede et al. 2010). An important feature of the events
driving ICM turbulence is that they involve both strong shear
and strong compressions that are not necessarily coincident.
Accordingly, ICM turbulence characteristics are unlikely to be
uniform on cluster scales.

ICM turbulence has important consequences, including non-
thermal pressure support, entropy and metal redistribution, and

probably cosmic ray acceleration. In addition, since the ICMs
are highly ionized and conducting, such turbulence may
amplify even very weak seed magnetic fields through the
small-scale, turbulent dynamo (e.g., Schekochihin et al. 2005;
Ryu et al. 2008; Cho 2014). Those magnetic fields, in turn, will
determine important microphysical properties of the ICM,
including electrical and thermal conductions and kinetic
viscosity that are dependent on the field structure and strength
(e.g., Narayan & Medvedev 2001; Kunz et al. 2012; Parrish
et al. 2012; Gaspari & Chruazov 2013; Kunz et al. 2014;
Howes et al. 2015). The possible origins and structures of ICM
seed fields are varied. There are many candidate sources,
ranging from primordial to plasma-physical, ICM- and galaxy-
based (e.g., Ryu et al. 2012; Widrow et al. 2012, for reviews).
In most cases the distributed seed field strength available for
amplification in the ICM should be several orders of magnitude
less than the microgauss field values inferred to be in clusters
from observations (e.g., Bonafede et al. 2010). Recent Planck
observation of cosmic microwave background anisotropies, for
instance, put a constraint on the upper limit of the primordial
field strength, B a few nanogauss at a scale of ∼1Mpc
(PlanckCollaboration 2015). Fermi observation of TeV
blazars, on the other hand, set a lower bound of ~ -10 16 G,
again at a scale of ∼1Mpc for the void magnetic field strength
(e.g., Neronov & Vovk 2010; Chen et al. 2014). The specific
origin, strength, and distribution of seed fields are beyond the
scope of our work here. Once kinetic turbulence develops on
small scales, the initial amplification of weak seed fields is
exponential and rapid (e.g., Schekochihin et al. 2005; Cho
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4 For simplicity, hereafter, both media will be labeled “ICMs.”
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et al. 2009), so memory of the initial field properties is
largely lost.

While the ICM magnetic fields are very important on small
scales, we note that microgauss field strengths are dynamically
unimportant on large scales in the ICM, since the associated,
characteristic Alfvén speeds, r=v P2 100BA km s−1,
while characteristic ICM sound speeds, ~c 10s

3 km s−1. As
noted, large-scale flow motions, and indeed turbulent velo-
cities, are expected to be significant fractions of the sound
speed.

Turbulent motions in compressible media will generally
include both solenoidal (w =  ´ ¹u 0) and compressive
( r r = - ¹ud dt1 0( ) · ) components, where u is velocity,
w is vorticity and r is mass density. In subsonic turbulence,
which should be the most prevalent in the ICM, the
compressive motions are often ignored. However, since even
solenoidal turbulence produces pressure fluctuations r~ u2

(Batchelor 1951), there will be density fluctuations if the sound
speed is finite, and thus a compressive component to the
turbulence (e.g., Kida & Orszag 1990; Porter et al. 1992, 2002;
Cho & Lazarian 2002; Gaspari et al. 2014). When the
turbulence velocities become more than ∼10% of the sound
speed, these will lead to shocks (e.g., Kida & Orszag 1990). If
the turbulence is forced by compressive motions, then that
compressive component typically dominates, even if the
turbulent velocities are subsonic (e.g., Federrath et al. 2011;
Konstandin et al. 2012). In fact, shocks are common in the ICM
with Mach numbers up to a few, so some contributions from
compressive forcing are likely. It is important to understand
these relationships when discussing ICM turbulence.

Turbulent dynamo amplification of the ICM magnetic field
also depends on the character of the turbulence, since
amplification comes mostly from stretching via solenoidal
motions. Because stretching rates in solenoidal turbulence are
generally fastest on the smallest non-dissipative scales, efficient
amplification of weak magnetic fields requires that the
solenoidal motions driven on large scales cascade to much
smaller scales before they are dissipated (call those lengths
“ℓd”). That is, the hydrodynamical Reynolds number, R He, , of
the turbulent flow, ~ ~R u L u ℓ L ℓHe e e d d e d

4 3( ) , must be
large, where ue and Le are the fluid velocity and scale of the
largest eddies, ud is the solenoidal velocity on the scale ℓd, and
Kolmogorov velocity scalings, ~u u ℓ Ld e d e

1 3( ) , were used to
obtain the final relation.

ICM plasmas, being very hot and diffuse, are only weakly
collisional, in the sense that mean free paths for Coulomb
scattering, lC, often exceed 10 kpc (e.g., Schekochihin &
Cowley 2006), so are large compared to important dynamical
scales. If Coulomb collisions were responsible for turbulent
kinetic energy dissipation in the ICM, i.e., if l~ℓd C, then
from the above relations, and assuming turbulence with

~L 100e kpc, we would expect R 100He, , which is probably
too small to allow significant turbulent amplification of ICM
magnetic fields. On the other hand, the presence of a weak
magnetic field enables a host of plasma-scale instabilities, such
as the firehose and mirror instabilities, that very likely reduce
the kinetic energy dissipation scales well below lC (e.g.,
Schekochihin & Cowley 2006; Howes et al. 2008, 2015; Kunz
et al. 2014). Thus, it is probable that ICM R 100He, , as
needed to facilitate turbulent magnetic field amplification.
Direct ICM kinetic turbulence measurements on scales below a
few kpc needed to confirm this explicitly do not yet exist.

There are, on the other hand, recent X-ray-based measurements
of density fluctuations in several ICMs that are consistent with
Kolmogorov, inertial turbulent velocity spectra below 10 kpc
(Gaspari & Chruazov 2013; Zhuravleva & Churazov 2015),
seemingly requiring kinetic energy dissipation scales below
that, and potentially well below that. Our simulations described
below are motivated by the expectation that, indeed, ℓd is
commonly sub-kpc, so that turbulence with R 100He, is also
common.
In this same context we mention that, of course, resistive

dissipation, or magnetic diffusion, also plays an important role
in determining the ability of turbulent flows to amplify
magnetic fields. Obviously, if magnetic diffusion is faster than
field line stretching on the smallest scales of the kinetic
turbulence, magnetic field amplification is not effective. This
comparison is generally expressed in MHD through the
magnetic Prandtl number of the fluid, n h t t= ~Pr m h,m d, d, ,
where ν and η are the fluid kinetic viscosity and resistivity,
while t md, and t hd, represent characteristic magnetic and
hydodynamical dissipation timescales. If both viscous and
resistive dissipation in ICMs were determined by (infrequent)
Coulomb collisions, that is, if so-called Braginskii MHD
(Braginskii 1965) applied, then P 10r,m

20 (e.g., Schekochi-
hin & Cowley 2006). This is certainly favorable to turbulent
magnetic field amplification, although such an extreme Prandtl
number is unlikely. We noted above, for a start, that ICM
viscosities are likely to be much smaller than in Braginskii
MHD. At the same time the ICM resistivity is likely to be
substantially larger than the Braginskii MHD model. On the
latter we comment that while no direct constraints on η values
appropriate to ICM turbulence are available, recent analyses of
cluster temperature structures strongly suggest that ICM
thermal conduction is suppressed by at least several orders of
magnitude compared to Braginskii MHD (Gaspari & Chruazov
2013; Zhuravleva & Churazov 2015). Since both thermal and
electrical transports are controlled by the effective electron
mean free path, this implies that the electrical conductivity
(resistivity) is substantially reduced (enhanced) in ICMs over
values derived from Coulomb scattering alone. Thus, Pr,m in
ICMs is likely to be considerably smaller than Coulomb-
scattering-based estimates, although there is no basis to suggest
that it is less than unity. The most important condition in our
problem is to have P 1r,m (e.g., Schekochihin et al. 2007;
Brandenburg 2014), which seems very likely. Our simulations
reported here are based on numerical, Euler-limit MHD, where
dissipation is negligible in resolved flows, as outlined in the
next section. Consequently, the effective ~P 1r,m .
An additional and very relevant constraint on the degree of

magnetic field amplification is the time available. An initially
weak magnetic field embedded in solenoidal turbulence for at
least a couple of tens of large-scale eddy turnover times can be
amplified to strengths approaching energy equipartition with
the solenoidal motions (e.g., Cho et al. 2009; Federrath et al.
2011; Beresnyak 2012). However, the available number of
such large-eddy turnovers in clusters, Ne, is not generally very
large. A simple estimate would be ~ ´N f u HLe d e e( ), where

» - -H 70 km s Mpc1 1 is the Hubble parameter, ue is the
largest eddy velocity, Le is the largest eddy size, and <f 1d is
an effective time fraction on which ICM turbulence is
strongly driven. For characteristic ICM values ~ ´u severale

-100 km s 1, ~L 100 kpce , ~f 0.5d , the expectation for Ne is
of order 10 (see also, e.g., Ryu et al. 2008; Cho & Ryu 2009).
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So, while it is likely that kinetic turbulence is well developed
and substantial magnetic field amplification takes place,
especially on relatively smaller scales, it is, on the other hand,
less likely that clusters and cosmic filaments should develop
stationary, fully saturated MHD turbulence states with energy
equipartition between kinetic and magnetic energies on large-
eddy scales.

To help explore the physics of the above issues we have
carried out two series of high resolution simulations of driven
MHD turbulence in compressible, isothermal fluids. The
simulations all begin with a very weak (b = =P P 10g B

6)
and, for simplicity, uniform seed magnetic field in a stationary
medium. The initial magnetic field value corresponds roughly
to  10( ) nG levels in the ICM context (see the next section),
although evolution of the field past very early, exponential
growth times is not sensitive to this choice. Analogous
simulations initiated with nonuniform seed magnetic fields
are discussed elsewhere (Cho & Yoo 2012; A. Emerick et al.
2015, in preparation). Turbulence is then driven toward
equilibrium velocities ~ c1 2 s( ) , where cs is the isothermal
sound speed (turbulence Mach number  ~ 1 2t ). For
characteristic ICM sound speeds, ~c 10s

3 km s−1, the equili-
brium turbulent velocities are then several hundred km s−1.

Two limiting cases for turbulence forcing are presented here.
In one case velocity forcing is entirely solenoidal ( d =u 0 ,· )
so the turbulence is predominantly solenoidal in character as it
evolves, and the turbulent dynamo is relatively efficient. In this
case vorticity in the turbulence (or, as it turns out, more
meaningfully, the enstrophy,  w= 1 2 2( ) , is initially amplified
by vortex stretching dynamics, as in neutral fluid turbulence.
But, as the magnetic field approaches saturation, magnetic
tension forces reduce vortex stretching, while they concentrate
tangential shearing motions inside magnetic structures, and
thereby dominate the (positive) generation of enstrophy in the
fully MHD turbulent flows. In the other simulation case the
forcing is entirely compressive, so there are no applied sources
of vorticity. On the other hand, vorticity is seeded and
amplified at shocks and by Maxwell stresses, but solenoidal
motions remain sub-dominant to the end of the simulations.
Then the turbulent dynamo is suppressed. In both cases shocks
develop out of the turbulence with strengths that are roughly
predictable from standard relations describing density fluctua-
tion amplitudes. While obviously idealized, the two model
extremes allow us to identify more clearly the dependencies of
the turbulence properties and the resultant magnetic field
growth on the nature of the driving.

Since shocks play such an important role in ICM turbulence,
we touch again on the fact that ICMs are weakly collisional
plasmas, while our simulations are based on numerical
approximations to MHD. Internal structures of collisionless
shocks depend on detailed plasma processes (e.g., Wilson et al.
2007). Yet, over sufficiently long time intervals across the full
transition they necessarily satisfy the same jump conditions as
MHD shocks, since the jump conditions are derived from the
basic conservation laws. Similarly, our numerical MHD shocks
contain structures which, in this case, depend on the numerical
method. In order to evaluate potential influences of internal
shock structures in our study we carried out a Favre filtering
analysis of our MHD simulations and compared those to
analytic assessments of the roles of shocks in similar flows.
We found, in fact, good consistency between the methods,

strengthening the reliability of our results in the context of ICM
shocks.
We present and compare these two studies here. The plan of

the paper is as follows. Section 2 outlines our numerical
methods and simulation parameters. In Section 3 we discuss
necessary physics of vorticity (or enstrophy) and magnetic field
amplification. Section 4 summarizes results of our analysis,
while our conclusions are summarized in Section 5.
Appendix A presents an analytic discussion of vorticity
generation across shocks in order to clarify the physical basis
of our results, Appendix B looks at the same issue in terms of a
Favre-filtered flow analysis of our simulation results, while
Appendix C outlines a novel scheme to identify and
characterize shocks in grid simulations. That method is used
here to compute area-weighted probability distributions of
shock Mach number.

2. NUMERICAL DETAILS

The simulations were carried out with an isothermal TVD
MHD code, updated for performance and parallel scaling from
the code presented in Kim et al. 1999. The code uses
constrained transport (Dai & Woodward 1998; Ryu et al.
1998) to maintain a solenoidal magnetic field ( =B 0· ). It
does not explicitly model viscous and resistive dissipations.
The cubic simulation box had dimensions = = =L L Lx y0

=L 10z code units with periodic boundaries. Initially the
medium was all at rest and had a uniform density r = 10 ,
gas pressure =P 1g,0 (so isothermal sound speed cs = 1)
and a uniform magnetic field in the x̂-direction
with b = =P P 10g B0 ,0 ,0

6, so an Alfvén velocity
r= » ´ -v P2 1.4 10BA

3. With these inputs the sound
crossing time for the box is 10 code units. Since our turbulence
velocities become comparable to the sound speed, and the
energy-containing scale is about 2/3 the box size (see below),
we would expect a characteristic time for turbulence develop-
ment to be 10( ) in these units, as it was.
Although we emphasize that our intent has been to make

these simulations as scale-free as possible, it can be helpful to
some readers to have some appropriate characteristic ICM
scales in mind. In that spirit, if we imagine that ~L 1000 kpc,
while ~c 10s

3 km s−1, then the equivalent sound crossing time
would be ∼100Myr, i.e., a unit of time in these simulations
would then roughly correspond to 10Myr. Similarly, the ICM
gas pressure, r= ~ ´ -

-P c n2 10g es
2 11

, 3 dyn cm−2, where

-ne, 3 is the electron density compared to - -10 cm3 3. The initial
magnetic field with b = 100

6 would correspond to
~ ´ -B 2 100

8 G, while the strongest ending rms field values
in these simulations (Model S2K) with bá ñ » 0.055 would
correspond to m~B 5rms G.
As noted in the Introduction, ICM turbulence is expected to

be driven by accretion, mergers, and substructure motions, as
well as by galactic winds and AGN outflows (see, e.g., Brunetti
& Jones 2014). Ryu et al. (2008), for instance, proposed a
scenario in which turbulence is initiated by the vorticity
generated at shocks formed during the formation of the large-
scale structure. Yet, defining the nature of the source of
turbulence is not trivial. Here we adopt the common approach
where turbulence is driven on scales comparable to the box size
and the resulting turbulence developed on smaller scales is
examined. Turbulence in our simulations was driven with a
method similar to that of Stone et al. (1998) and Mac Low
(1999). Velocity forcing df was drawn from a Gaussian random
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field with a power spectrum µ -P k k kexp 8k
6

exp( ) in the
interval  k k1 100 , where =k k 2exp 0 , with p=k L20 0;
d dº Du f t was added at intervals D =t L c0.01 0 s. The
forcing power spectrum peaks around »k k3 2d 0( ) , or around
a scale »L L2 3d 0( ) . With ~L 1000 kpc, for instance,

~L 67d kpc, which is of order of the scale height of a cluster
core. Forcings have random phases, so they are temporally
uncorrelated. The amplitude of the perturbations was tuned
to produce = á ñ ~u u 1 2rms

2 1 2 (sonic Mach number
 = ~u c 1 2t rms s ) at saturation. In practice the equili-
brium, total turbulent kinetic-energy-equivalent velocities fell
in the range  u0.4 0.6rms , depending on the nature of the
driving defined below and on the resulting final magnetic field
strength. It will be convenient below to refer times to an
effective turbulence driving time, =t L ud d rms. In these
simulations, ~ ~t L c4 3 13d 0 s( ) (in code units).

ICM turbulence should derive from dynamics that lead to a
mix of solenoidal and compressive driving conditions. We
idealized that here by using a Helmholtz decomposition of the
driving velocity field. It was thereby separated into solenoidal
( d =u 0· ) and compressive ( d ´ =u 0) components.
The fraction of the total driving kinetic energy put into
solenoidal motions is designated below by the symbol fs.
Results are presented here for purely solenoidal, =f 1s , and
purely compressive, =f 0s , driving. The simulations were
carried out in each case over a wide range of grid resolutions,
D =x L N0 . For the fs = 1 case we show results from
simulations carried out on =N 10243 3 and =N 20483 3 cell
grids. For compressive driving, fs = 0, we include results from
simulations on =N 5123 3 and =N 10243 3 cell grids.

The so-called integral scale of the velocities developed in the
flows, LI u, , is a standard tool to help characterize turbulence
properties. Specifically,

å åp
=

=

¥ -

=

¥
-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟L P dk P k dk

1

2
, 1I u

k k
k u

k k
k u, ,

1

,
1

0 0

( )

where Pk u, is the power spectrum for the three-dimensional
(3D) velocity field. The integral scale LI u, in the fully
developed, driven turbulence will typically be comparable to,

but a bit smaller than, the driving scale Ld mentioned above.
For the simulations reported here ~L L0.7I u, d (see Table 1). A
characteristic eddy turnover time at the integral scale can then
be defined as = =t L u L L te I I u I u, , rms , d d( ) . In our simulations

~t 10e I, (in code units).
As mentioned above, all of the numerical models presented

here were computed using a version of the isothermal ( rµPg )
TVD MHD code in which explicit viscosity and resistivity are
absent; the simulations were not intended to resolve the viscous
or resistive dissipation scales of the flows. They employ,
instead, nonlinear switches that are sensitive to variations in
fields at the limit of what can be resolved on the computational
grid and apply minimal damping needed to stabilize numerical
instabilities at Euler discontinuities including shocks, contact
discontinuities, and slip surfaces. For this reason such
simulations are sometimes called “Implicit Large Eddy
Simulations” (ILES)5; they implicity assume sub-grid struc-
tures corresponding to discontinuities (see Section 1 and
Appendix B for further comments on this issue)
Although continuously driven simulations of this kind

develop a Kolmogorov-like inertial range, they do not have
physically defined kinetic or resistive dissipation scales, such as
those defined in Navier–Stokes flow. Thus, it is not possible to
establish corresponding physical hydrodynamical and magnetic
Reynolds numbers or, for that matter, the magnetic Prandtl
number. However, the simulations do have well-defined
dissipation scales related to the mesh scale. Peak to trough
variations are typically spread over about Dx4 , corresponding
to a dissipation length ~ D ºℓ x L N4 4d 0 . This grid-based
dissipation scale is approximately the same for all fields.
Hence, the effective Prandtl number is effectively ~P 1r,m . All
the presented models exhibit inertial-like power spectra when
turbulence first develops (see Figures 3 and 11) but before
magnetic stresses begin to influence the flows. Thus, we can
construct estimates for effective hydrodynamical Reynolds
numbers of the turbulence based on the integral scale defined in
Equation (1) as =R L ℓH I ue, , d

4 3( ) , where the 4/3 index
assumes Kolmogorov velocity scaling for simplicity. Reynolds
numbers computed in this fashion range between about 240 and
1390 for the simulations presented here.
Table 1 summarizes the basic inputs and characteristics of

four models discussed in the following sections.

3. EVOLUTION OF VORTICITY
AND MAGNETIC FIELDS

3.1. Vorticity and Enstrophy Generation

Vorticity is a key measure of solenoidal turbulence, since
solenoidal turbulence always includes circulation, and vorticity
provides a measure of eddy circulation rates. It is important,
however, to keep in mind that solenoidal turbulent energy is
generally concentrated on largest-eddy scales (d µu ll

2 2 3 for
Kolmogorov turbulence) while the associated vorticity gen-
erally cascades to smaller scales closer to dissipation scales
( w µ -ll

1 3∣ ∣ in the above case). This difference will be
important in our discussion of results in Section 4. To
streamline our discussion there we briefly review some of the
basics of its generation and amplification. The following
equation governing vorticity is obtained from the curl of the
Navier–Stokes equation with magnetic (Maxwell) stresses,

Table 1
Model Summaries

Model fs Grid (N3) tend ReH L LI u, 0 te I, á ñPB,end

S1K 1.0 10243 160 556 0.447 8.7 ´ -4.4 10 2

S2K 1.0 20483 130 1392 0.445 9.0 ´ -5.5 10 2

ChK 0.0 5123 625 242 0.480 12.3 ´ -1.2 10 3

C1K 0.0 10243 120 618 0.484 11.5 ´ -7.4 10 4

Plasma β values at tend are bá ñ = á ñP1 Bend ,end .

Note. All simulations were done in a periodic box of size =L 100 in code
units, using an isothermal equation of state rµPg , mean density
r rá ñ = = 10 , mean gas pressure á ñ = =P P 1g g,0 , and thus sound speed
cs = 1. Time units are, then, L c0.1 0 s. The initial magnetic pressure

b=P PB g,0 ,0 0 with b = 100
6, so Alfvén speed r= = ´ -v P2 1.4 10BA

3.
The parameter fs measures the fraction of forcing power in solenoidal motions.
The peak driving scale »L L2 3d 0( ) (see Section 2). The hydrodynamical
integral scale, LI u, , is defined in Equation (1), while the eddy turnover time at
LI u, , = =t L u L L te I I u I u, , rms , d d( ) , where =t L ud d rms is the “driving time.”
The effective hydrodynamic Reynolds number =R L ℓH I ue, , d

4 3( ) with
= D ºℓ x L N4 4d 0 .

5 Also see, e.g., Aspden et al. (2008) for further discussion of ILES.
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where adrv is the impulsive driving force, = +P P PT B is the
sum of the gas pressure, P, and the magnetic pressure,

=P B1 2B
2( ) , in the units we use here. = T B B· is the

magnetic tension, ν is the kinematic viscosity (assumed

constant), while r r= 


G S1( ) · , with

S the standard

traceless strain tensor (e.g., Mee & Brandenburg 2006). The
box-averaged mean wá¶ ¶ ñ =t 0, since forcing is uncorrelated
across the box in these simulations (á ´ ñ =a 0drv ). We note
for clarity that the first two terms on the right-hand side (rhs)
can be combined to produce the more commonly used term

w ´ ´u( ).
The first rhs term in Equation (2) accounts for conservative

advection of the vector vorticity, while the second represents
vortex stretching. The remaining terms are vorticity source or
sink terms. Our calculations simulate isothermal fluids, so

rµP and the baroclinic source term in Equation (2),
r r ´ P 2( ) , vanishes everywhere. On the other hand, the

magnetic pressure will not generally be a barotropic function of
density, that is, r¹P PB B ( ), so the magnetic field can
contribute a quasi-baroclinic source term even in isothermal
flows. However, magnetic pressure variations and density
variations turn out to be strongly anticorrelated in turbulent
flows,6 so their gradients are, after all, nearly antiparallel. This
term is then mostly sub-dominant in our simulations, even
when the magnetic field is not weak. The magnetic tension term
in Equation (2) represents the resistance of the field to bending
and stretching, which inhibits solenoidal motions, including
those that promote vortex stretching. The magnetic terms in
Equation (2) are initially small in our simulations, because the
initial magnetic field is weak and uniform. But, as we shall see,
they have roles to play once motions distort the field, and
especially if the magnetic field is strongly amplified by dynamo
action. The final, non-forcing term in Equation (2) accounts for
viscous dissipation. Our simulated fluids are nominally “ideal,”
since, formally, n = 0. On the other hand, numerical dissipa-
tion mimics viscosity on scales close to the grid resolution,
producing effects resembling the viscous term in Equation (2).
It allows viscous dissipation, shock formation, and, through the
viscous stress (n ´ G) term, vorticity creation in shocks.
Appendix B examines vorticity evolution in mass-weighted
Favre-filtered ideal flow, where we obtain an analogous
Reynolds-stress source term in ideal flows.

We emphasize that shocks are expected, do develop in our
simulated turbulent flows, and are important, even though the
turbulence is subsonic. This will be discussed in detail in
Sections 4.1.2 and 4.2.2. Turbulent motions produce those
shocks. The shocks, in turn, generate vorticity. Vorticity
changes across shocks are most simply understood by looking
explicitly at shock jumps. Several authors have explored this
issue analytically (e.g., Crocco 1937; Kevlahan & Pudritz

2009). Since shocks turn out to be a principal generator of
vorticity in our initially irrotational, compressively driven
turbulence simulations, and since the full physics of shock
generation of vorticity is not necessarily intuitive, we present
an outline of the relevant processes in Appendix A, extended to
include magnetic field influences. The basic consequent
hydrodynamical behaviors are contained in Equation (15);
magnetic field augmentations are contained in Equation (23).
As an additional approach to understanding shock generation
of vorticity, our Appendix B examines these interactions in
terms of filtered flows, which largely eliminates issues of
numerical artifacts at shock discontinuities in the simulations.
From that analysis we find, in fact, that the unfiltered, raw
analysis of our simulations gives reliable results. From this we
conclude in the context of ICM shocks, which involve weakly
collisional plasmas, that the key physics associated with the
vorticity evolution at shocks derives from conservation of mass
and momentum, so is independent of the specific dissipation
physics.
While Equation (2) provides an effective description of local

vector vorticity evolution, w xt,( ), the vector field is not very
useful for an understanding of the global vorticity evolution in
our periodic-box simulations, since wá ñ =t 0( ) . The vorticity
magnitude, w∣ ∣, or more conveniently the enstrophy,
 w= 1 2 2( ) , does provide a useful measure of global
evolution. The dot product of Equation (2) with the vorticity,
w, gives an enstrophy equation,

¶
¶

= + + + + +
t

F F F F F F , 3adv stretch comp baroc mag diss ( )

where we have combined and arranged rhs “flux” and source
terms to emphasize their physical interpretation.7 Specifically,
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where ŵ is the unit vector in the direction of w.
The enstrophy advection term, Fadv, is conservative, so that

its integral over our periodic simulation volume always
vanishes. Similarly, in our simulations the baroclinic term,

=F 0baroc . The magnetic term, Fmag, is, as noted above,
initially very small, because of the initially weak and uniform
magnetic fields. In the solenoidal driving simulations, however,
this term eventually plays a significant role in the evolution of
the enstrophy and the turbulent energy. Fmag, being dominated
by magnetic tension, generally reduces the rate of vortex
stretching. It can, however, also concentrate and stabilize
tangential shear on small scales, and so lead to a net increase in
enstrophy above the neutral fluid level. Recall from above that
in Kolmogorov turbulence  µ -ll

2 3, so the enstrophy is

6 This behavior reflects the well-known dominance of slow-mode oscillations
over fast modes in compressible MHD turbulence (e.g., Lowal & Lazar-
ian 2010).

7 We drop forcing contributions in Equation (3), since the velocity forcing,
adrv, (which is only on large scales) is essentially uncorrelated with w. The net
forcing contribution to ¶ ¶t , while not exactly zero, is negligibly small.
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concentrated on small scales even without this influence from
the magnetic tension. The remaining contributors from
Equation (3) to increases in enstrophy in our simulations are
the Fstretch and Fcomp terms that account for vortex stretching
and net enstrophy production in compressions, respectively.
Note that the fluid compression rate, - u· , enters into both
Fadv and Fcomp terms. However, whereas Fadv always integrates
to zero in a periodic domain, Fcomp does not, if there is a
net alignment of the velocity and enstrophy gradient fields, so
that ò ò=  >uF dV dV 0comp · . This alignment is usually
true in shocks (see Appendices A and B), so this term turns out
in our isothermal flows to represent the dominant contribution
of shocks to positive enstrophy growth. As we see below, the
Fcomp term is especially important in the compressively forced
turbulence, but less so in the solenoidally forced turbulence.
The dissipative term, Fdiss, should also be present through
numerical viscosity, although we find in our simulations that
the other terms alone can account reasonably well for the
enstrophy evolution in these simulations.

3.2. Magnetic Field Amplification

The magnetic field evolution is governed by the induction
equation, whose structure, of course, is very similar to
Equation (2) governing vorticity. For a generalized Ohm’s
law in the MHD approximation the induction equation is (e.g.,
Kulsrud et al. 1997; Boyd & Sanderson 2003)

h
p

¶
¶

=  ´ ´ +  -  ´ 
B

u B B
t

c

en
n P

4
, 52

e
2 e e( ) ( )

where η is the resistivity (assumed constant and isotropic).
The last term on the right in Equation (5), the so-called
“Biermann battery” source term, is analogous to the baroclinic
vorticity source term, and comes from different electron and
ion mobilities.8 Here, ne and Pe are the electron density
and pressure, respectively. It could be important as a seed
magnetic field generator in the early universe; the resulting
magnetic field would be weak, for instance á ñ -B 10 20 G
in protoclusters (e.g., Kulsrud et al. 1997; Ryu et al. 2012). We
do not consider creation of magnetic fields in this work, only
evolution of existing magnetic fields, and so neglect that
term.

Similar to the case for vorticity, w, Equation (5) for the
vector magnetic field, B, is not very useful for study of the
global evolution of the magnetic field in our simulations.
Analogous to that case, however, we can construct an equation
for magnetic pressure (or equivalently energy density),

h

¶
¶

=-

+  -  + 

u

u u B B

P

t
P

P B B P2 , 6

B
B

B B
2( )

( )·

ˆ · · ˆ · · ( )

where we have dropped the Biermann source term, and B̂ is the
unit vector in the direction of B. Analogous to Equation (3), the
first rhs term in Equation (6) represents advection of magnetic
energy and integrates to zero over our periodic simulation
boxes. The second rhs term is the magnetic field analogy to the
vortex stretching term. It is the essential contributor to

magnetic energy growth in the turbulent dynamo. Taken by
itself in steady solenoidal turbulence without any back-
reaction, it leads to an exponential growth in the magnetic
pressure, with a rate wG ~  ~ ~uB u ll l∣ ˆ · ∣ , with l an
effective scale over which magnetic flux tubes are stretched by
velocity fluctuations. The third term is analogous to the Fcomp

term in Equation (3), while the final term represents resistive
dissipation of magnetic energy. Again our simulations are
assumed to be “ideal”, i.e., formally h = 0. However, once
again, numerical approximations lead to diffusion and dissipa-
tion of magnetic fields on grid resolution scales, so mimic the
effects of a finite η. Since both the numerical resistivity and the
numerical viscosity represent dissipation on the same, grid
resolution scale, the effective magnetic Prandtl number, as
discussed in Section 2, should be n h= ~P 1r,m .
Our initial magnetic field, with = -P P10B g

6 , is too weak to
have any significant dynamical influence at the start of these
simulations. However, through the kinematic fluctuation
dynamo the field is quickly amplified once solenoiodal
turbulent motions have developed on small scales. Once the
dynamo is underway the field energy should be amplified
exponentially ( µ GE texpB ( )) on a timescale G ~ =- t1

m

w~l u 1m m m, where lm is the minimum length scale of
solenoidal velocity fluctuations and um is the associated
velocity fluctuation. Following Beresnyak (2012) to allow for
turbulent flux diffusion, we can estimate more quantitatively
the expected exponential-phase growth rate of the magnetic
energy to be G » t0.6 m. Once the magnetic tension on
lengths lm, ~T P ll B mlm m

, is comparable to Reynolds stresses
on those scales, i.e., when r~P l u l lB m

2
mlm

( ) or when
~E l E lB Km m( ) ( ), magnetic field growth on those scales will

saturate as it back-reacts on the motions and reduces vortex and
magnetic field stretching. We will see this directly in
Section 4.1.1. The field can continue to be amplified by vortex
stretching motions on larger scales until it saturates there for
similar reasons. For Kolmogorov scaling the kinetic energy
described by this evolution scales as µE l lK

2 3( ) . Since,
with this scaling, the eddy turnover time is = µt l u l le

2 3( ) ,
the magnetic energy during this phase is expected to show a
linear growth in time, µP tB . During this linear growth period
the energy-containing scale of the magnetic field should
increase with time as µl tB

3 2 (again assuming Kolmogorov
scaling). This phase continues until the scale reaches the
turbulence driving scale Ld, actually ~ - L1 2 1 3 d( ) (e.g.,
Cho & Ryu 2009). By the time the growth in magnetic energy
on large scales is balanced by Ohmic dissipation on small
scales, EB approaches the kinetic energy contained in
solenoidal turbulent motions. How long that takes depends
on the nature of the turbulence, but saturation from an initially
weak field will generally span many large-scale eddy turnover
times.
The expected magnetic field evolution in the compressively

forced situation is different from that in the solenoidally forced
situation in important respects. First, since small-scale dynamo
amplification depends on solenoidal motions, and those are
much reduced in that case, the rate of magnetic energy growth
will be much slower. Field amplification will also saturate at
much lower energy levels, since the energy available to amplify
the field is reduced as well.

8 Note that p4 appears here, since we chose to express the magnetic field in
units such that =P B1 2B

2( ) .
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4. DISCUSSION OF RESULTS

4.1. Purely Solenoidal Forcing: fs = 1

We look first at the evolution of the turbulence developed
from purely solenoidal forcing, fs = 1, starting with an
overview of the various turbulent energy components and the
enstrophy, then examine the properties of associated density
fluctuations and shocks found in our simulations.

4.1.1. Energy and Enstrophy Evolution

Figure 1 illustrates the kinetic and magnetic energy evolution
in simulations with two different resolutions (models S1K and
S2K). The early kinetic turbulence evolution is essentially
hydrodynamic, since, as discussed in Section 3, the initial
magnetic field is too weak to modify motions significantly. Our
setup gives a characteristic timescale on the driving scale,

»L 6.7d , of = ~t L u 13d d rms . Solenoidal kinetic energy
cascades to smaller scales on an eddy turnover time,

w» ~t l u 1l l l, so hydrodynamical, solenoidal turbulence
is well developed by w~ ~t t 1 Ld d in the fs = 1 simulations.
The kinetic turbulent energy, EK, briefly peaks after one large-
eddy turnover near ~t 15 and then levels out by ~t 25 at

»E 0.18K , corresponding to =u 0.6rms . That behavior
obtained for the fs = 1 simulations we did with grid resolutions
as coarse as 2563. The total kinetic plus magnetic energy
remained close to »E 0.18T from ~t 25 forward in all the
fs = 1 simulations. Thus, since the total thermal energy is fixed
by the isothermal equation of state and does not change in our
periodic volume, the total energy stored in the system was
roughly constant from ~t 25 onwards. The early enstrophy
evolution mirrors this behavior, as we would expect and as is
illustrated in Figure 2. The rate of change in the total
enstrophy,9 ¶ ¶t , peaks just after t = 10, while the cascade
of solenoidal kinetic energy to small scales is developing, then

adjusts, so that after ~t 30 it remains close to zero. We will
look more closely at the enstrophy evolution below.
Figure 1 shows that the magnetic energy evolution histories

are very similar in the two fs = 1 simulations, with a slightly
greater magnetic field enhancement in the higher resolution
simulation reflecting the effectively smaller viscosity in that
case. Much of this difference is actually created early on, but
after ~t 15, when enstrophy on small scales is fully developed
and during the period of exponential magnetic field growth.
The difference reflects the fact that the minimum eddy scale,
lm, is larger in the lower resolution, S1K, simulation, so the
initial growth rate, G µ -lm

2 3, is reduced accordingly. The
exponential magnetic energy growth is followed, as expected,
by a period of linear energy growth in the interval

 t20 80. The transition into linear growth begins when
~E EB K few per cent and ends several large-scale eddy

turnover times (~ ~t 13d ) later when ~E E 30B K %. Figure 2
shows that during this period the amplification of enstrophy by
way of vortex stretching (Fstretch) is greatly reduced. This is a
direct consequence of the inhibition by magnetic tension of
stretching motions. Somewhat surprisingly, however, in the
same time period there is a comparable increase in enstrophy
amplification due to magnetic tension (Fmag), so that the total
rate of enstrophy amplification remains almost unchanged and
balanced by dissipation. We explain that below. By the end of
the S2K simulation at t = 130 the magnetic energy to kinetic
energy ratio is ~E E 1 2B K . The magnetic energy is still
growing slowly, so over very long times it should eventually
approach close to ~E E 2 3B K , the value observed in
simulations of incompressible turbulence (e.g., Ryu et al.
2008; Cho et al. 2009).
After ~t 40, EK drops in response to magnetic field back-

reaction toward an eventual value »E 0.12 0.13K ( ) in the S2K
(S1K) simulation, corresponding to = »u 0.5trms . The
solenoidal component contains about 93% of the kinetic energy
from ~t 20 on, so about 7% is compressional (not shown in
the figure). Sub-dominant, compressional motions, including

Figure 1. Evolution of kinetic, EK, magnetic, EB, and total, ET, energies for the
S1K and S2K simulations of isothermal, compressible, solenoidally driven
(fs = 1) MHD turbulence. Figure 2. Enstrophy growth rate, ¶ ¶t , and the contributing source terms for

the S1K simulation with fs = 1. Quantities are dimension -t 3 in code time units.

9 The rate of total enstrophy change is obtained from the explicit difference
between total enstrophy values in nearby, saved time steps in the simulations.
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shocks, are present, however, and we discuss their properties
below.

Figures 3 and 4 illustrate important changes in distribution
properties of kinetic and magnetic energies (and associated
stresses) as the magnetic field back-reaction plays an increas-
ingly significant effect. Figure 3 shows the kinetic and
magnetic energy power spectra of the S2K simulation at
t = 20 and t = 130. At the earlier time the turbulence is still
essentially hydrodynamic with an approximately Kolmogorov
form, µ -E k kK

5 3( ) , roughly in the interval  k2 50,
where k is in units of p= =k k L2min 0 0. On all but very small
scales the magnetic energy is still much less than the kinetic
energy. By t = 130, when EB is near saturation, magnetic
energy is at least comparable to kinetic energy on all but the
largest scales. Magnetic tension back-reaction has become
important, and substantial kinetic energy has been removed
from a wide range of scales below Ld, flattening EK(k) in the
process. Note, as part of this, that EK(k) is not reduced for
k 200. In fact, at t = 130 the enstrophy power (k E kK

2 ( )) on
these scales actually is increased from what it is at t = 20 and is
strongly peaked around »k 200 (not plotted explicitly here).
This is a reflection of the previously noted dominant enstrophy
amplification after ~t 40 by magnetic tension contributions as
seen in Figure 2. Fmag also is strongest on these scales, as it
turns out. Associated changes in the character of the magnetic
field are illustrated in Figure 4, which volume-renders the
magnetic field intensity at the same two times. At the earlier
time the strongest magnetic field is broadly distributed into
relatively short “worm-like” filaments, generated by the
cylindrical sheath of high rate of strain common in vortex
tubes. By the later time, however, the strongest field structures
are longer, but more important to our discussion here, the
transverse character of the structures has transformed from
round tubes into flattened, filamentary ribbons, as is evident in
the image. As we will discuss in detail elsewhere (D. H. Porter
et al. 2015, in preparation), the ribbon cross sections consist of
laminations separated roughly on the dissipative scale with

magnetic field lines along the long axis confining transverse,
tangential shear layers. The magnetic tension in the ribbons
both confines the shear layers (so enhances enstrophy on those
scales) and stabilizes them against Kelvin–Helmholtz
instabilities.

4.1.2. Compressions and Shock Generation

As outlined in the introduction, even though these turbulent
flows are subsonic and predominantly solenoidal in character,
pressure fluctuations must produce density fluctuations. The
statistical properties of the compressions in our fs = 1 models
are characterized in Figure 5, which shows evolution of the
density probability distribution function (PDF) for the S2K
simulation at =t 20, 80, 130. The form of the PDF is
approximately the log-normal distribution, originally suggested
for supersonic turbulence (Vazquez-Semadeni 1994). The
standard deviation of the PDF decreases in this case from
s » 0.19 at t = 20, when the kinetic turbulence Mach number,
 » 0.6t , to s » 0.15 at t = 130, as magnetic field tension
begins to become significant and reduces the kinetic turbulence
Mach number to » 0.5t . Both results are consistent with the
simple scaling relation s = + bln 1 t

2 2 2( ), using b = 0.3, in
agreement with »b 1 3 predictions for solenoidal forcing in
compressible, isothermal turbulence (e.g., Federrath et al.
2009; Konstandin et al. 2012; Molina et al. 2012). Thus,
characteristic density and gas pressure fluctuations in the
S2K simulation after solenoidal turbulence develops are
∼15%–20%.
Shocks form in this case especially by way of collisions

between compression waves. The strength of the density
fluctuations can then provide a way to estimate a characteristic,
expected shock strength. In isothermal flows, the shock jump
condition is simply


dr
r

m= = - 1, 7s
2 ( )

wheres is the shock Mach number. If, as a crude model, we
set m s= , so match the density PDF standard deviation to a
shock jump to define the characteristic shock Mach number,
s,c,

 


s

s

» + +

»
+ ~ +



b

b

1 ln 1

1
1

1

2
1

2
.

8
t

t

s,c
2 2( )

( )

For our solenoidal simulations with  = 0.5t this leads to
 - ~ »1 1 12 0.08s,c . Figure 6 shows the probability
distribution, f s( ), measured at several times for shocks in
the S1K simulation obtained using methods introduced in
Appendix C. The dotted line in the figure corresponds to an
exponential PDF,  µ - -f exp 1 0.08s s( ) ( ( ) ). That is,
the measured shock distribution is determined by a character-
istic Mach number,  = 1.08s , very consistent with Equa-
tion (8). The total area of the detected shocks with Mach
numbers exceedings,c averaged over time is approximately
100 code units (~Ld

2), corresponding to a mean shock spacing,
~l Ls d. Then the simulation box, or more physically, the

largest driven eddy, contains, on average, one such shock
spanning that eddy scale.

Figure 3. Power spectra, E(k), of kinetic (EK(k)) and magnetic (EB(k)) energies
at t = 20 and t = 130 in the S2K simulation with fs = 1. The long-dash line
segment represents a Kolmogorov slope.
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4.2. Compressive Forcing: fs = 0

4.2.1. Energy and Enstrophy Evolution

The evolution and properties of the compressively forced
turbulence with fs = 0 have several important differences in
comparison to the solenoidally forced turbulence with fs = 1.
Figure 7 illustrates the energy evolution of the two kinetic
turbulence components (solenoidal and compressive) along
with the magnetic energy for the C1K simulation. In this case
the total turbulent energy is almost fully accounted for over the
entire simulation time by the compressive kinetic energy, as
one might expect. An approximate steady-state condition for
the total and compressive energy with »E 0.08K ( = 0.4t )

is achieved before t = 10, so within one sound crossing time of
the simulation box. However, after »t 5 there is a rapid
growth in solenoidal kinetic energy, and that component
saturates at a level ~E E 1 15K s K c, , after t ∼ 20–25. Magnetic
energy grows in response to the solenoidal motions, but

<E E 0.01B K t, even at the end of the simulation (t= 120).
The origins of the solenoidal kinetic energy in this

simulation are made clear by examination of Figure 8 and by
noting that significant shocks from collisions of compressively
driven motions first form around t 5 as in Figure 9. In the
interval  t5 10 the compressive kinetic energy approaches
its equilibrium level, and shocks resulting from collisions

Figure 4. Volume renderings of magnetic energy density, EB, in the SK1 simulation at t = 20 (left) and t = 130 (right). “Cool” is weak; “hot” is strong. Opacities are
chosen to isolate stronger fields.

Figure 5. PDF of density in the S1K simulation at three times. Red dot–dashed
curves represent log-normal distribution fits at t = 20 and t = 130.

Figure 6. PDF of shock Mach numbers in the S1K simulation. Each of the data
curves á ñf 30,40 and á ñf 120,140 corresponds to an average for two indicated times.
The dotted line represents an exponential PDF in the variable - 1 with a
characteristic = 1.08sc .
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between compressive waves become common. Figure 8 shows
the volume-integrated enstrophy growth rate, ¶ ¶t, before
»t 16, along with the volume-integrated enstrophy “flux

terms,” Fstretch, Fcomp, and -Fmag
10 in Equation (3) (see also

Equation (4)). Before »t 5 there is a tiny enstrophy seeding,
due primarily to numerical truncation. But ¶ ¶t increases
abruptly around t = 5, when shocks first develop, growing
almost three orders of magnitude before t = 10. The total
growth rate is almost perfectly matched during that interval by
Fcomp. By »t 10 the solenoidal kinetic energy, EK s, , is
approaching its equilibrium level (Figure 7) and magnetic

tension (Fmag) and viscous dissipation (numerical, of course)
have begun to inhibit enstrophy growth. Consequently, the
enstrophy growth rate peaks and is then somewhat less than
Fcomp. In any case, since the integrated Fcomp comes primarily
from shocks (see Section 3.1, Appendix B), it is then clear that
enstrophy growth during the early evolution of the compres-
sively forced turbulence is a by-product of shock formation.
That point is shown explicitly in Figure 9, which shows
zoomed-in images of shock structures and associated enstrophy
source terms in a two-dimensional (2D) slice of one of the
fs = 0 simulations at t = 8.
Since the early enstrophy growth in the fs = 0 simulations is

localized to shocks, we would expect magnetic field amplifica-
tion to be similarly distributed. Indeed, that is the case. Volume
renderings of the magnetic field distributions in the C1K
simulation are shown in Figure 10. At t = 20 the strongest
magnetic field is obviously associated with regions of recent
shock passage. Even much later, at t = 120, when both the
compressive and solenoidal turbulence motions are near
steady-state and broadly distributed, the distribution of
magnetic field is obviously clumpy and lacking the ribbon-
like topologies noted for the solenoidal case in Figure 4.
The influence of shocks also shows in the turbulent energy

power spectra, as shown for the C1K simulation at two times,
t = 15 and t = 120, in Figure 11. The compressive kinetic
energy spectra are almost the same at the two times and
resemble a Burgers form, µ -E k kK c,

2( ) , and thus are distinctly
steeper than Kolmogorov, roughly over the range
 k5 100. The solenoidal kinetic energy spectrum shows

modest growth during this interval over all ranges of k. It is also
distinctly steeper than Kolmogorov, again reflecting the shock
origins of these motions.
Since the magnetic field amplification by way of the

turbulent dynamo comes primarily from flux-tube stretching
(Equation (6)), it is essentially dependent on the solenoidal
turbulence component. Because that component in the fs = 0
simulations always represents less than 10% of the turbulent
kinetic energy, it is not surprising that the magnetic field grows
much more slowly and remains much weaker than in the fs = 1
simulations. Recall in the S1K simulation that the linear growth
of the magnetic field approaches saturation to ~E E 1 3B K s,
around t ∼ 80–100. In contrast, for the C1K, compressive
forced simulation, the magnetic field is still in the linear growth
phase with ~E E 1 8B K s, ( ~E E 0.008B K t, ) at the end of the
simulation, t = 150. We extended a lower resolution fs = 0
simulation, ChK to t = 625, and found even on that much
longer time interval that the magnetic energy was still very
slowly increasing in time, so had not reached a fully saturated
level. Thus, the efficiency of magnetic field energy generation
from (total) turbulent energy input depends on the nature of the
turbulence forcing.

4.2.2. Compressions and Shock Generation

Given the nature of forcing in the fs = 0 simulations and the
resulting dominance of compressive kinetic energy, we should
expect the density fluctuations and their associated shocks to be
stronger than in solenoidally forced turbulence of the same
Mach number, t. Indeed, as Figure 12 shows, the density
PDFs in our fs = 0 simulations exhibit a log-normal form, just
as for our fs = 1 simulations, but with standard deviations, σ,
about twice as large. Again, applying the scaling relation,

s = + bln 1 t
2 2 2( ), with = 0.4t , we find b = 0.9. This is

Figure 7. Evolution of kinetic energy, EK c, and EK s, , and magnetic energy, EB,
for the C1K simulation of compressively driven (fs = 0) MHD turbulence.

Figure 8. Early evolution of the enstrophy growth rate, ¶ ¶t , along with
contributing terms from Equation (3) for the C1K simulation.

10 <F 0mag , so we reverse its sign in the plot.
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in good agreement with a previous prediction of »b 1 for
compressive forcing (e.g., Konstandin et al. 2012).

As before, we can compare this measure of the distribution
of density fluctuations to the distribution of shock strengths,
which is illustrated in Figure 13. Once again the shock
PDF is well described by an exponential form; in this
case  µ - -f exp 1 0.125s s( ) ( ( ) ), corresponding to
 = 1.125sc . The predicted value from Equation (8) with
b = 0.9 and  = 0.4t is  = 1.16s,c , which, although
slightly larger than measured, represents reasonable agreement,
given the simplicity of the model. In this case the total area of
detected shocks with  s s,c is about = L400 4 d

2, so
about four times greater than for the fs = 1 case. Then the mean
separation between such shocks is ~l L1 2s d( ) . The higher
frequency of moderate strength shocks is consistent with the
broader density distribution and the steeper energy power
spectra mentioned above.

5. CONCLUSION

Compressible turbulence in ICMs is likely to be common at
levels that require consideration of both solenoidal and
compressive motions. Both components will be present, since
processes that drive ICM turbulence are likely to include both
solenoidal and compressive forcing, and since each kind of
turbulence can create the other. Shocks formed in the
turbulence are the central link in that process. However, the
energy partitioning of these components, as well as their energy
spectra, depend on the character of the forces that drive
them. Since ICMs are electrically conducting, solenoidal
turbulent motions will, by the turbulent dynamo, amplify
magnetic fields that thread them. The rate and effectiveness
of that amplification depends on the strength of the solenoidal
turbulent component, and thus also on how the turbulence is
driven. We found that while shocks are stronger, the solenoidal

Figure 9. 2D slice isolating intersecting shocks and enstrophy generation at t = 8 in a compressive forcing simulation. (a)  u· , delineating the pattern of shocks. (b)
Total enstrophy source term, Ftot˜ , of Favre-filtered flow as defined in Appendix B. (c) Reynolds-stress enstrophy source term, Fsfs˜ , of Favre-filtered flow. (d)
Compressive enstrophy source term, Fcomp˜ . Flows are complex but, generally speaking, “upstream” is to the left. Warm colors represent positive values; cool colors
represent negative values, while green is zero. The horizontal line with tick marks (separated by 0.5 length units) corresponds to the 1D cut in Figure 14.
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component contains less energy and so magnetic field
amplification is less efficient, when turbulence is driven with
compressive forcing.

As the magnetic field becomes dynamically important,
magnetic tension will inhibit solenoidal motions, leading to
anisotropies in the turbulence (e.g., Goldreich & Sridhar 1995)
and reductions in kinetic energy. Somewhat ironically,
however, the magnetic tension forces can add vorticity on
small scales by concentrating and protecting shear layers inside
(∼2D) magnetic flux ribbons.

We proposed a simple relationship between the Mach
number of the turbulence and the Mach numbers of shocks
that they generate derived from the width of the density PDF.

The relation can be applied to both solenoidally driven and
compressively driven turbulence, although the parameterization
depends on the nature of the forcing, so it is important again to
evaluate the character of the turbulent driving forces.
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Fund of UNIST (1.140035.01). This work was carried out in
part using computing resources at the University of Minnesota
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presentation of the paper.

Figure 10. Magnetic energy density, EB, volume renderings in the C1K simulation at t = 20 (left) and t = 120 (right). “Cool” is weak; “warm” is strong. Opacities are
chosen to isolate stronger field regions.

Figure 11. Power spectra of kinetic energy, E kK c, ( ) and E kK s, ( ), and magnetic
energy, EB(k), in the C1K simulation at t = 15 and t = 120.

Figure 12. PDF of density in the C1K simulation at t = 120. The red dot–
dashed curve represents a log-normal distribution fit.
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APPENDIX A
ENSTROPHY GENERATION ACROSS SHOCK JUMPS

Vorticity and enstrophy generation in shocked flows are
fundamental to an understanding of compressible turbulence.
To support discussions above we summarize here two simple,
analytic ways to establish vorticity and enstrophy generation
across shock jumps. We initially ignore magnetic field
influences, but will subsequently address those. The first,
mathematically more direct approach begins with a form of
Euler’s equation,

r
=

¶
¶

+  = - 
u u

u u
D

Dt t
P

1
, 9g( · ) ( )

expressed explicitly in terms of vorticity using the vector
identity, w =  - ´u u uu1 2 2· ( ) ; namely,

w
r

´ =  +  +
¶
¶

u
u

u P
t

1

2

1
. 10g

2 ( )

Near a shock with local normal direction = ´n q zˆ ˆ ˆ, defined
by two orthogonal shock tangent directions, q̂ and ẑ ,
Equation (10) can be projected along q̂ to give

w w
r

= -
¶
¶

-
¶

¶
-

¶

¶
⎜ ⎟⎛
⎝

⎞
⎠u u

s
u

P

s

u

t

1

2

1
, 11n z z n

g q2 ( )

with ¶ ¶ = s q̂ · measuring variations in this direction along
the shock surface. The analogous projection of Equation (10) in
the orthogonal tangent direction, ẑ , looks the same, with wq and
uq replacing wz and uz, while the three rhs derivatives (now
with ¶ ¶ = s z( ) ˆ · ) change sign.

Being based on ideal flow, Equation (11) does not apply
inside shocks, but by using shock jump conditions, it can be
applied to quasi-ideal flows across shocks. We emphasize that
the flows can be inhomogeneous and unsteady, so long as the
local shock jumps are well defined in space and time. In

particular mass and momentum conservation in hydrodynami-
cal shocks give

=

=
=

u
r

u

u u

u u

1
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2
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r= +
-

P P
r

r
u

1
, 14g g n,2 ,1 1 ,1

2 ( )

where the subscripts 1, 2 correspond to upstream and down-
stream states measured in the local shock rest frame, and

m r r= + =r 1 2 1. It is straightforward using Equation (12)
to show that dw w w= - = 0n n n,2 ,1 . In addition Equations (12)
guarantee that ¶ - ¶ =u u t 0q q,2 ,1( ) . Using Equations (12),
(13), and (14) we then obtain the jump in wz as

dw w w mw

m
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r
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m
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where the sound speed, cs, is used in the second term inside the
parenthesis, according to barotropic relation

r¶ ¶ = ¶ ¶P s c sg s
2 , in order to simplify the form. Alternate

forms of that term, no longer including parenthesis and no
longer assuming anything about the equation of state, would be
m r m¶ ¶ = -u P s u Du Dtn n q,1 1 1 ,1 ,1[ ( )] ( ) . There is an obvious,
analogous expression for dwq. Equation (15) is equivalent to
Equation (4) in Kevlahan & Pudritz (2009), who present the
result in somewhat different form. Note that we did not assume
a steady shock boundary, nor a planar shock, nor did we
enforce energy conservation across the transition. Terms
including m¶ ¶s that are apparent from insertion of Equations
(13) and (14) into Equation (11) cancel, so Equation (15) also
incorporates compression variation, or equivalently, Mach
number variation along the shock surface. As pointed out by
Kevlahan & Pudritz (2009) this result is, then, quite general.
The first rhs term in Equation (15) represents conservation of

circulation across the shock; this enhancement in vorticity
components tangent to the shock face just reflects the reduced
downstream area of circulation in a plane that includes the
shock normal, n̂. The second rhs term including the parentheses
represents baroclinic creation of vorticity across the shock
when the upstream conditions are inhomogeneous. In an
isothermal fluid, such as in our study, m+ = u c1 n,1

2
s
2, so this

term vanishes. The third rhs term in Equation (15) accounts for
variations in the shock normal speed along its surface; it
represents variations in the refraction of streamlines crossing
the shock. The variations include nonuniform upstream flows
in plane shocks, but also normal velocity variations introduced
along shock surfaces due to non-planar shock geometry. In the
latter context it is commonly associated with vorticity creation

Figure 13. PDF of shock Mach numbers in the C1K simulation. The data curve
corresponds to an average for times =t 40, 50, 60. The dotted line represents
an exponential PDF in the variable -M 1s with a characteristic =M 1.125sc .
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in curved shocks or intersecting shocks (Crocco 1937). For a
uniform flow into a shock with radius of curvature R, this term
has a magnitude

dw
m

m
~

+
u

R1
. 16

2
1 ( )

An alternative derivation of Equation (15) that makes some
physical contributions to the vorticity jump more obvious uses
terms from u u( · ) directly from Equation (9). Again,
working with w = ¶ ¶ - ¶ ¶u q u nz n q , we see that we need
to evaluate jumps in two quantities, ¶ ¶u qn and ¶ ¶u nq . To
avoid confusion with notation in the previous form we write
here the tangential and normal derivatives as ¶ ¶ = q q· ˆ
and ¶ ¶ = n n· ˆ. The first of these is easily determined from
the first of the jump conditions (12) as
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The second can be obtained in a few more steps by projecting
Equation (9) along q̂ on each side of the shock ( =k 1, 2) to
produce
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Now, using the second and third jump conditions in
Equation (12), we can take the difference
¶ ¶ - ¶ ¶u n u nq q,2 ,1 to obtain
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Application of the shock pressure jump, Equation (14), leads
finally to
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The first rhs term in Equation (20) simply accounts for
compression of tangential shear across the shock. The
remaining terms incorporate the stresses downstream caused
by upstream pressure, density, and normal velocity variations
tangential to the shock, as well as tangential variations in the
shock compression. Note that in combination with Equa-
tion (17) to create wz, this last term is canceled. The others,
along with the first term in Equation (17), account fully for the
vorticity change through the shock. Indeed, the combination
¶ ¶ - ¶ ¶u q u nn q,2 ,2 from Equations (17) and (20) leads once
again to dwz in Equation (15).

The enstrophy change across the shock, d dw= 1 2 2( ) , is
simply

 w wd d dw

dw w dw w

dw dw

= +

= +

+ +⎡⎣ ⎤⎦

1

2

1

2
, 21

z z q q

z q

1
2

,1 ,1

2 2( )( )

· ( )

{ · · }

( )

where, since dw = 0n , we have set w wd =1·
dw w dw w+z z q q,1 ,1· · , and dw dw dw= +q z

2 2 2( ) ( ) ( ) . These
can be evaluated from Equation (15) and its dwq analogy. All
the terms contributing to d are inherently non-negative, except
for the second and third rhs (source) terms in Equation (15)
when they appear inside the curly bracket in Equation (21). For
example, the contribution of the “Crocco’s” source term to the
enstrophy jump Equation (21) is m m- +12[ ( )]
w ´  un,1( ) · , which can take either sign. Note that even if
w = 01 , the last two rhs terms in Equation (21) will generally
be finite and positive.
On the whole, except in cases where the incident vorticity

magnitude is very small and the shock curvature radius is very
small and negative (e.g., in some shock intersections), the
total change, d , across shocks given by Equation (21) should
be positive. Thus, we expect the integrated quantity

 ò d ~ >u dn u 0n,1· across most shocks. That is sig-
nificant to our analysis of volume-integrated enstrophy
evolution. It helps explain, in particular, why the volume
integral of the ¶ ¶t contributor,  = - + u uFcomp · · ,
(Equations (3), (4)) provides a good measure of the enstrophy
generation by shocks in our turbulent flows (e.g., Figure 8).
Additional insights to this relationship come from the filtered-
flow enstrophy analysis in Appendix B.
The presence of magnetic fields can also contribute to and

modify vorticity (enstrophy) generation in shocks. Equa-
tion (10) can be extended to MHD by including Maxwell
stress terms,

r r
= -  -

F
TP

1
, 22B

M ( ) ( )

on the rhs. There are two ways that the Maxwell stresses enter
the problem at hand. First, FM explicitly provides a contribu-
tion, dwB z, , to the rhs of Equation (15),

dw
r
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In addition, the jump conditions expressed in Equations (12)–
(14) will be modified because of the anisotopic nature ofT . The
latter influences are complex and depend on the nature of the
shock (fast or slow mode). A couple of simple examples,
however, are sufficient to establish the character of dwB z, . First,
consider the case of a plane shock interacting with a one-
dimensional (1D) magnetic field aligned with the shock
normal, B x nt( ) ˆ. Then the only change from Equation (15)
comes from the magnetic pressure, which does not in this case
change across the shock, while the gas pressure does change
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according to Equation (14). The total pressure is no longer
barotropic even in an isothermal gas, and there is a term added
to Equation (15),


dw m

r
m=
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u B
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s
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s
2

1
2

1
, 24B z
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( )

where = u vnA ,1 A is the local Alfvénic Mach number of the
shock.

For a second example again consider a uniform magnetic
field, B, now interacting with a curved shock having a radius of
curvature, R. Then the inclination of the field to the shock will
vary with location along the shock, as will the magnetic
pressure jump even if μ is constant. In addition, the magnetic
tension forces will modify tangential velocity jumps, adding
terms to Equation (13) of order u ut n A

2 . The net result of the
magnetic field can be incorporated into a term with magnitude


dw ~

u

R

1
. 25B z,

A
2

1 ( )

Since these magnetic field-induced vorticity sources scale
inversely with Alfvénic Mach number squared compared to
hydrodynamical sources, they will be relatively small in the
context of ICMs (e.g., Ryu et al. 2008). On the other hand,
these influences would become significant when magnetic
fields are dynamically important on scales ~R.

APPENDIX B
FILTERED FLOWS AS A PROBE OF ENSTROPHY

GENERATION IN TURBULENCE SHOCKS

The methods used in Appendix A to quantify the generation
of vorticity and enstrophy across shocks are based mathema-
tical discontinuity at shocks with well-defined states on both
sides of the discontinuity. On the other hand, turbulent flows
and the shocks they generate are by nature complex, and the
gradient operations involved in evaluating the critical dynami-
cal variables are not, in general, analytically well defined across
shocks. In addition, ICM shocks are effectively collisionless, so
that their internal structures are both complex and unsteady.
When finite difference derivatives are involved in computing
shock transitions these kinds of issues are similarly obvious.
Consequently, in simulations estimates of derivative-based
quantities across the numerical shocks might not be reliable,
especially near locations of strongly curved or intersecting
shocks, where the results of Appendix A suggest the most
significant shock-associated vorticity generation probably takes
place. Similar concerns exist at slip surfaces, where again
spatial derivatives are not necessarily properly defined.

A simple and effective strategy to ameliorate these issues
commonly employed in turbulence studies is to work with
properly filtered flow variables that eliminate both the
mathematical and numerical problems. In particular, deriva-
tives of the velocity field can be expressed in terms of filtered
(smoothed) values together with a well-behaved sub-filter shear
or Reynolds stress. Discontinuities formally disappear, so all
the metrics are well represented within the filtered flow. This
provides not only a mathematical and numerical framework
that is well founded, but also, as we show, offers useful insights
into the manner in which vorticity is generated within shocks.
Here we introduce such an analysis and apply it, in particular,
to examine the shock generation of vorticity in flows that are
initially irrotational, w =xt, 0( ) , and to confirm our

conclusion from unfiltered flow analyses of our simulations
that the Fcomp source term defined in Equation (4) is
predominantly associated with shocks and represents the
dominant shock-related source of enstrophy in isothermal
flows. This finding also reinforces the previous finding that the
evolution of vorticity across shocks is predominantly deter-
mined by basic conservation of mass and momentum across
those shocks.
We start with the unfiltered continuity and momentum

equations for a compressible, ideal fluid (for simplicity setting
=B 0 and n = 0 and ignoring the forcing term),

r
r
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Given any spatial normalized convolution filter

ò= -x x x x xQ g Q d 281 1
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the corresponding Favre (or mass-weighted) filter (Favre 1983)
is

r r=Q Q . 29˜ ¯ ( )

The resulting equations for evolution of the filtered set of fields
r uP, ,( ¯ ¯ ˜) become
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is the sub-filter scale Reynolds stress tensor,
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The resulting equation for the Favre-filtered velocity is
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The curl of Equation (33) provides an equation for the
evolution of the vorticity of the filtered velocity, w =  ´ u˜ ˜,

w  w w  w 
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The concerns about spatial derivatives outlined at the start of
this appendix are avoided with this equation, since w̃ represents
the curl of the filtered velocity, not a filtering of  ´ u.
By taking the inner product of w̃ with Equation (34) and

rearranging some terms we get an equation for evolution of the
enstrophy density  w=f

1

2
2˜ of the Favre-filtered flow that is

very similar in form to Equation (3) for the enstrophy of the
unfiltered flow; namely,

¶

¶
= + + + + = +

t
F F F F F F F ,
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f
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where now
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are flux and source terms analogous to those in Equation (4)
expressed in terms of filtered quantities, and

= + + +F F F F F , 37tot stretch comp baroc sfs˜ ˜ ˜ ˜ ˜ ( )

while remembering in our isothermal simulations =F 0baroc˜ . In
this derivation we have neglected magnetic and viscous
stresses, so terms Fmag˜ and Fdiss˜ are omitted, but a new,
baroclinic-like term has appeared, Fsfs˜ , which represents
enstrophy generation through anisotropic, sub-filter scale
Reynolds stresses. In what follows we emphasize again that
w̃ and  f represent solenoidal properties of the filtered velocity
field, not a filtering of the curl of the raw velocity field.

Since the volume integral of Fadv˜ vanishes in our periodic
domain, we focus on the three net-contributor source terms in
Equation (36), designating their sum as Ftot˜ (Equation (37) with

=F 0baroc˜ ). For a consistency check we have verified
numerically from our simulation data that, within about 10%,
¶ ¶ - »x x xt F Ff adv tot( ) ˜ ( ) ˜ ( ) over the grid, with ¶ ¶x tf ( )

estimated explicitly from differences in  xf ( ) constructed from
data in the closest saved time steps. This means that enstrophy

accounting including only ideal terms provides a pretty good
match to the data.
As a simple, easily constructed filter, g(r), we applied a

spatial convolution based on iterating a top-hat filter. In
particular, the top-hat filter averaged a 3 × 3 × 3 block of cells
to produce the filtered value in the central cell. This top-hat
filter was then iterated several times, which is an efficient way
to implement a convolution with the Gaussian form

s p
= s-g r e

1

2
, 38r

3
22 2

( )
( )( ) ( )

where s = * N0.826 . For >N 3 this is quite accurate, and
the effective convolution function is impressively isotropic. In
our analysis we used N = 8, which is equivalent to a Gaussian
convolution with s = Dx2.336 , where Dx is the size of one
computational cell. At the price of a modest smoothing in the
flows we thus obtained a substantial gain in ability to extract
consistent solenoidal measures of the simulated flows in
regions of sharp spatial gradients that would, otherwise, be
difficult to characterize.
Our particular interest in this Appendix is vorticity/

enstrophy generation in complex shock structures. So, from
here we focus on the application of this formalism to the early
evolution of enstrophy in our compressively forced, fs = 0,
simulations, where complex, intersecting shocks develop
directly from the forced compressions into an initially
irrotational flow. We examined in our simulation data both
the global and local behaviors of the filtered-flow quantities in
Equations (35) and (36). With regard to the former we found,
with the exception of some very early contributions from Fsfs˜ in
the filtered flow, that the time evolution of the volume-
integrated filtered-flow enstrophy flux and source terms in
Equation (36) agreed well with the analogous unfiltered-flow
flux terms in Equation (4) that are shown in Figure 8.
In reference to Figure 8 and as noted before, the net early

growth of the unfiltered enstrophy was due almost entirely to
Fcomp once the first shocks formed ( ~t 2) and until solenoidal
motions became broadly distributed (t ∼ 15–20), when Fstretch

became competitive. On the other hand, = -  ¹uF 0comp ·
only if  ¹ 0, so some seed enstrophy is needed for that term to
contribute. In our isothermal flows the baroclinic source term,
Fbaroc, vanishes; at early times our magnetic fields are very
weak, so Fmag∣ ∣ is quite small. In the earliest unfiltered flow,
before any shocks developed, noise, mostly from numerical
truncation, was available to seed very small amounts of
vorticity. On the other hand, once shocks formed, the necessary
seeds could come from anisotropic flow stresses that are
represented by the n ´ G term in viscous flows, or by the
analogous Reynolds stress term, Fsfs˜ , in the ideal, filtered flow
in the present discussion. Indeed, we found in the interval
 t2 5 of our fs = 0 simulations that the net contributions to

enstrophy growth in the filtered flow came in comparable
amounts from Fsfs˜ and Fcomp˜ . After ~t 5 Fsfs˜ dropped rapidly to
near zero, leaving Fcomp˜ alone as the dominant contributor to
¶ ¶tf before ~t 20, just as for the unfiltered flow.
Close examination showed, in addition, that the enstrophy

production in the filtered flow during the early time period was
highly episodic and strongly correlated spatially with shocks,
and with shock intersections, especially. That behavior is
obvious in Figure 9, taken at t = 8 from an fs = 0 simulation
and displaying enstrophy sources in a 2D slice containing a

Figure 14. Plots of the total and dominant shock-concentrated enstrophy
source terms from the filtered-flow enstrophy Equation (35) along a horizontal
cut through the shock complex shown in the 2D slice in Figure 9.
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complex of intersecting shocks penetrating a region of
irrotational flow. Figure 14 represents a horizontal (left-to-
right) line cut across the middle of this complex at the same
time, showing the total enstrophy source term, Ftot˜ , as well as
the dominant contributing terms, Fsfs˜ and Fcomp˜ . The sharp
negative spike in Ftot˜ near x = 0 (also visible in Figure 9) comes
from Fstretch˜ (not plotted), revealing the generation of shear
within the forward shocks that is enhanced by stretching across
the rear, oblique shock along this line. The region to the left is
previously unshocked, so irrotational. Keeping in mind that the
quantities shown are derived from Gaussian-filtered (broa-
dened) flow fields, it is then evident that as the flow enters the
shock complex it is the sub-filter Reynolds stress term, Fsfs˜ , that
creates the seed enstrophy, but that as the flow proceeds
through the shock complex the compressive term, Fcomp˜ ,
becomes a comparable player, while the stretching term,
Fstretch˜ , can contribute downstream.

APPENDIX C
DETERMINING SHOCK STRENGTH DISTRIBUTIONS

IN GRID SIMULATIONS

Physical shocks are generally approximated mathematically
as 2D surfaces, that is, the shock transition becomes vanish-
ingly thin. In grid-based numerical simulations, on the other
hand, a shock transition is usually distributed across several
grid cells, making accurate identification of the shock surface,
as well as a proper determination of the shock normal and
shock transition properties, challenging. Several approaches to
this problem have been used before (e.g., Ryu et al. 2003;
Vazza et al. 2011). Here we outline a new post-processing
algorithm that can be used to construct and analyze shock
surfaces in simulations such as ours that lead to complex shock
distributions. We find it to be especially flexible and also quite
robust in identifying and cataloging weak shocks. We also find
that it gives results very consistent with an updated version of
the method in Ryu et al. (2003). Our immediate goal is to
compute the area-weighted probability distribution of shock
Mach numbers. Other applications of the method, including
those that especially utilize the information it extracts about the
shape of shock surfaces, are obvious.

We assume availability of a 3D snapshot of a simulated flow,
and in particular the spatial distribution in cells of the velocity
and density fields, u and ρ. In brief, the procedure consists of
partitioning the computational volume into small cubes, sized
so that one cube can fully enclose a numerical shock transition
but is unlikely to enclose multiple shocks. Cubes actually
containing shocks are identified, and the location of the shock
surface within the cube, its orientation and strength are
determined. Those surfaces can then be displayed and/or their
properties analyzed and tabulated.

The initial step is a division of the computational volume
into small cubes containing ´ ´ =n n n Nc c c c cells. The
cubes should be large enough to span numerical shock
transitions, but we also want to assume that at most one shock
structure exists inside a given cube. In those cases where
shocks intersect within a cube we make the simplifying
assumption that the structure can be interpreted in terms of a
single shock surface. We have found nc = 5 (so Nc = 125) to
be a good practical choice.

Two criteria are used to determine which cubes contain a
shock surface. First, there must be a sufficiently strong
compression rate ( r r = - >ud dt1 0( ) · ) in some

fraction of the cube, and second, variations in ρ must be
primarily in one direction. The compression rate criterion
includes two steps. We require at least a critical minimum
number of cells in a cube, Ns,c, with  <u 0· and that the
average divergence in those Ns cells is less than a critical value,
ducrit. Specifically, inside each cube we compute

å= - uN h , 39
N

s

c

( · ) ( )


=

>
⎧⎨⎩

⎫⎬⎭h q
q
q

0, 0
1, 0

, 40( ) ( )

and compare Ns to Ns,c. We have found =N 8s.c to be a good
practical choice. The average compression rate over these
cells is

å = - u u u
N

h
1

, 41s
s

⟨ · ⟩ ( · ) · ( )

which is compared to ducrit. We have found
= - ´  udu 1crit max( · ) , where  u max( · ) measures the

maximum rarefaction rate in the simulation box, to be a
reliable and effective choice in turbulent flows.
The local variation in the density, ρ, is characterized by its

gradient. A quantitative measure of the mean square variations
of ρ in different directions averaged over each cube can be
constructed in terms of the average of the tensor product of r
with itself, namely,

å r r l= =

a e . 42i icube

1

3

⟨ ⟩ ˆ ( )

This is a real and symmetric matrix that has positive, real
eigenvalues,   l l l 01 2 3 , with l l l+ + =1 2 3

rá  ñ2
cube∣ ∣ , and with orthogonal, unit eigenvectors, e e e, ,1 2 3ˆ ˆ ˆ ,

related to

a as above. The three eigenvalues correspond to the

mean square variation of ρ in the direction of the corresponding
eigenvector. If e1̂ is set to be the principal direction of variation,
l1 is the largest eigenvalue. To the extent that the faction of
mean square variation along e1̂

l
l l l

=
+ +

f 431
1

1 2 3
( )

is close to unity, variation in the other, orthogonal directions is
negligible, and the variation of ρ is primarily along the
direction of e1̂. Our condition for variations in ρ is

>f f , 441 crit ( )

where fcrit is less than but close to unity. We have found
=f 0.8crit to be an effective choice.

Having used the above steps to establish the presence and
orientation of a shock inside a cube, we next measure 1D
density and velocity profiles along the shock normal, e1̂,
determine the location of the shock surface inside the cube, and
calculate the shock jump conditions, including, for instance,
shock Mach number (given an equation of state—isothermal in
the present case). We construct the requisite density and
velocity profiles by binning their cell values against the
coordinate = xs e1̂ · , where x is the computational grid
coordinate. We use grid values inside a cylinder centered on
the cube with a cylindrical axis aligned along e1̂. The radius of
the cylinder can be varied, but we find that half the size of the
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cube works well, since this is small enough to have little
variation in directions transverse to e1̂, but large enough to
include a few dozen cells in the averages in the s bins. The
length of the cylinder along e1̂ extends just beyond the cubical
volume in order to capture the variation of density and velocity
near the edge of the cube. We then look for a well defined
shock jump, i.e., rapid changes in the density and velocity
across a few cells with relatively constant values on either side
of this transition. Finally, we assign values on either side of the
jump as the pre- and post-shock values of ρ and u, which are
used to establish the shock jump. If no well-defined shock jump
is found, the cube is rejected as a shock container. If the cube is
accepted, we use the jump centroid to locate the shock
transition, which, with e1̂, locates and orients the shock plane
within the cube.

Once we have located the shock plane we can compute its
effective area inside a cube. To do this we first locate the Ni

intersection points of the shock plane with the cube edges, Ei.
In a given shocked cube this will range between Ni = 3 and
Ni = 6. A central point in the plane within the cube can be
generated from a linear, vector average of all these cube edge
intersections. Those points can be sorted into a list that runs, for
example, clockwise around the central point of the plane. Then
a sequence of point pairs can be combined with the central
point to construct Ni triangles, whose areas can be added to
determine the shock area inside the cube. Appropriate shock
properties, such as Mach number, can be assigned to the area.
Additional steps to be discussed elsewhere can be used to
establish other geometric properties of the shock surface, such
as its curvature.
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