2,335 research outputs found
Ozone exposure, uptake, and response of different-sized black cherry trees
Differences in exposure, uptake and relative sensitivity to ozone between seedling, sapling, and canopy black cherry (Prunus serotina Ehrh.) trees were characterized during two growing seasons in north central Pennsylvania. Open-grown trees of all sizes received a similar amount of ozone exposure. Seedlings had greater foliar ozone injury, expressed as adaxial stipple and early leaf senescence, than larger trees, which was correlated with their higher rates of stomatal conductance and greater rates of ozone uptake. The higher stomatal conductance and ozone uptake of seedlings was proportional to their higher (less negative) predawn xylem water potentials. Seedlings appeared to have some ability to compensate for injury because their free growth habit reduced exposure per unit leaf area compared to larger trees whose leaves were exposed to ozone throughout the entire growing season
Symmetry energy of dense matter in holographic QCD
We study the nuclear symmetry energy of dense matter using holographic QCD.
To this end, we consider two flavor branes with equal quark masses in a
D4/D6/D6 model. We find that at all densities the symmetry energy monotonically
increases. At small densities, it exhibits a power law behavior with the
density, .Comment: 9 pages, 3 figure
Crystal Structure of the Sodium Cobaltate Deuterate Superconductor NaxCoO2o4xD2O (x=1/3)
Neutron and x-ray powder diffraction have been used to investigate the
crystal structures of a sample of the newly-discovered superconducting sodium
cobaltate deuterate compound with composition Na0.31(3)CoO2o1.25(2)D2O and its
anhydrous parent compound Na0.61(1)CoO2. The deuterate superconducting compound
is formed by coordinating four D2O molecules (two above and two below) to each
Na ion in a way that gives Na-O distances nearly equal to those in the parent
compound. One deuteron of the D2O molecule is hydrogen bonded to an oxygen atom
in the CoO2 plane and the oxygen atom and the second deuteron of each D2O
molecule lie approximately in a plane between the Na layer and the CoO2 layers.
This coordination of Na by four D2O molecules leads to ordering of the Na ions
and D2O molecules. The sample studied here, which has Tc=4.5 K, has a refined
composition of Na0.31(3)CoO2o1.25(2)D2O, in agreement with the expected 1:4
ratio of Na to D2O. These results show that the optimal superconducting
composition should be viewed as a specific hydrated compound, not a solid
solution of Na and D2O (H2O) in NaxCoO2oyD2O. Studies of physical properties
vs. Na or D2O composition should be viewed with caution until it is verified
that the compound remains in the same phase over the composition range of the
study.Comment: 22 pages, 8 figure
Optical-phonon resonances with saddle-point excitons in twisted-bilayer graphene
Twisted-bilayer graphene (tBLG) exhibits van Hove singularities in the
density of states that can be tuned by changing the twisting angle . A
-defined tBLG has been produced and characterized with optical
reflectivity and resonance Raman scattering. The -engineered optical
response is shown to be consistent with persistent saddle-point excitons.
Separate resonances with Stokes and anti-Stokes Raman scattering components can
be achieved due to the sharpness of the two-dimensional saddle-point excitons,
similar to what has been previously observed for one-dimensional carbon
nanotubes. The excitation power dependence for the Stokes and anti-Stokes
emissions indicate that the two processes are correlated and that they share
the same phonon.Comment: 5 pages, 6 figure
Ab Initio Calculation of Crystalline Electric Fields and Kondo Temperatures in Ce-Compounds
We have calculated the band- hybridizations for CeLaM
compounds ( and ; M=Pb, In, Sn, Pd) within the local
density approximation and fed this into a non-crossing approximation for the
Anderson impurity model applied to both dilute and concentrated limits. Our
calculations produce crystalline electric field splittings and Kondo
temperatures with trends in good agreement with experiment and demonstrate the
need for detailed electronic structure information on hybridization to describe
the diverse behaviors of these Ce compounds.Comment: 13 pages(RevTeX), 3 Postscript figure
Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype
Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression
Measurement of E2 Transitions in the Coulomb Dissociation of 8B
In an effort to understand the implications of Coulomb dissociation
experiments for the determination of the 7Be(p,gamma)8B reaction rate,
longitudinal momentum distributions of 7Be fragments produced in the Coulomb
dissociation of 44 and 81 MeV/nucleon 8B beams on a Pb target were measured.
These distributions are characterized by asymmetries interpreted as the result
of interference between E1 and E2 transition amplitudes in the Coulomb breakup.
At the lower beam energy, both the asymmetries and the measured cross sections
are well reproduced by perturbation theory calculations, allowing a
determination of the E2 strength.Comment: 8 pages, 3 figure
Magnetization process for a quasi-one-dimensional S=1 antiferromagnet
We investigate the magnetization process for a quasi-one-dimensional S=1
antiferromagnet with bond alternation. By combining the density matrix
renormalization group method with the interchain mean-field theory, we discuss
how the interchain coupling affects the magnetization curve. It is found that
the width of the magnetization plateau is considerably reduced upon introducing
the interchain coupling. We obtain the phase diagram in a magnetic field. The
effect of single-ion anisotropy is also addressed.Comment: 6 pages, 7 eps figure
TTF-1 Action on the Transcriptional Regulation of Cyclooxygenase-2 Gene in the Rat Brain
We have recently found that thyroid transcription factor-1 (TTF-1), a homeodomain-containing transcription factor, is postnatally expressed in discrete areas of the hypothalamus and closely involved in neuroendocrine functions. We now report that transcription of cyclooxygenase-2 (COX-2), the rate limiting enzyme in prostaglandin biosynthesis, was inhibited by TTF-1. Double immunohistochemistry demonstrated that TTF-1 was expressed in the astrocytes and endothelial cells of blood vessel in the hypothalamus. Promoter assays and electrophoretic mobility shift assays showed that TTF-1 inhibited COX-2 transcription by binding to specific binding domains in the COX-2 promoter. Furthermore, blocking TTF-1 synthesis by intracerebroventricular injection of an antisense oligomer induced an increase of COX-2 synthesis in non-neuronal cells of the rat hypothalamus, and resulted in animals' hyperthermia. These results suggest that TTF-1 is physiologically involved in the control of thermogenesis by regulating COX-2 transcription in the brain
Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation
© 2019 American Neurological Association Objective: Patients with chronic stroke have been shown to have failure to release interhemispheric inhibition (IHI) from the intact to the damaged hemisphere before movement execution (premovement IHI). This inhibitory imbalance was found to correlate with poor motor performance in the chronic stage after stroke and has since become a target for therapeutic interventions. The logic of this approach, however, implies that abnormal premovement IHI is causal to poor behavioral outcome and should therefore be present early after stroke when motor impairment is at its worst. To test this idea, in a longitudinal study, we investigated interhemispheric interactions by tracking patients’ premovement IHI for one year following stroke. Methods: We assessed premovement IHI and motor behavior five times over a 1-year period after ischemic stroke in 22 patients and 11 healthy participants. Results: We found that premovement IHI was normal during the acute/subacute period and only became abnormal at the chronic stage; specifically, release of IHI in movement preparation worsened as motor behavior improved. In addition, premovement IHI did not correlate with behavioral measures cross-sectionally, whereas the longitudinal emergence of abnormal premovement IHI from the acute to the chronic stage was inversely correlated with recovery of finger individuation. Interpretation: These results suggest that interhemispheric imbalance is not a cause of poor motor recovery, but instead might be the consequence of underlying recovery processes. These findings call into question the rehabilitation strategy of attempting to rebalance interhemispheric interactions in order to improve motor recovery after stroke. Ann Neurol 2019;85:502–513
- …