641 research outputs found

    Production of α-Bisabolol from metabolically engineered Escherichia coli

    Get PDF
    α-Bisabolol is a natural-occurring sesquiterpenoid with applications in cosmetics as whitening and soothing agent. It is synthesized from the universal precursors, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are generated either through the mevalonate (MVA) pathway or the 2C-methyl-D-erythritol-4-phosphate (MEP) pathway. Farnesyl pyrophosphate (FPP) synthase (IspA) then catalyzes the condensation of IPP and DMAPP to the linear FPP, which is rearranged and cyclized to α-bisabolol by bisabolol synthases. Here, we compared the capacity of 5 α-bisabolol synthases from Lippia dulcis, Streptomyces citricolor, Santalum spicatum, Matricaria recutita, and Artemisia annua for α-bisabolol production. MVA pathway and FPP synthase were also overexpressed to supply sufficient FPP for bisabolol synthesis in the recombinant E. coli. Bisabolol synthase from M. recutita (MrBBS) shows the highest activity of bisabolol synthesis, and 75 mg/L/OD600 of bisabolol was produced in a test-tube culture. We further optimized the expression level of IspA and MrBBS by modulation their RBS strength. The 24 bisabolol synthesis operons with different RBSs were assessed for their performance on bisabolol synthesis. By this approach, the best strain is able to produce bisabolol with a capacity of 220mg/L/OD600 in a test tube culture. The consequence of host strain optimization led to an increase in bisabolol production to 300 mg/L/OD600, which presents a 4-fold increase over the initial engineered strain. This work was supported by a grant (NRF-2016R1A2B2010678) from the National Research Foundation, MSIP, Korea

    Evaluation of Matusita Equation and Its Modified Expression for Determining Activation Energy Associated with Melt Crystallization

    Get PDF
    Both the Matusita equation and the modified Matusita equation for estimating the activation energy associated with non-isothermal crystallization were critically evaluated. The derivation for melts crystallization on cooling indicates that, unlike for the crystallization that occurs on heating, the term 1 - exp (-Delta G/RT) in the basic rate equation of crystal growth and the term depending on the initial temperature of the cooling process cannot be neglected. It is demonstrated that both the Matusita equation and its modified expression are only valid to estimate the activation energy associated with the crystallization that occurs on heating, but are inapplicable for the melt crystallization that occurs on cooling. It is suggested that the isoconversional methods of Friedman and Vyazovkin should be alternative to determine effective activation energy for melt crystallization that occurs on cooling.open1133sciescopu

    Crystallization Kinetics and Mechanism of CaO-Al2O3-Based Mold Flux for Casting High-Aluminum TRIP Steels

    Get PDF
    Non-isothermal crystallization of the newly developed lime-alumina-based mold fluxes was investigated using differential scanning calorimetry. The crystallization kinetic parameters were determined by Ozawa equation, the combined Avrami-Ozawa equation, and the differential iso-conversional method of Friedman. It was found that Ozawa method failed to describe the non-isothermal crystallization behavior of the mold fluxes. The Avrami exponent determined by the combined Avrami-Ozawa equation indicates that the crystallization of cuspidine occurs through bulk nucleation and reaction-controlled three-dimensional growth, and then transforms to reaction-controlled two-dimensional growth at the crystallization later stage in lime-alumina-based mold fluxes with higher B2O3 content. For the mold fluxes with lower B2O3 content (10.8 mass pct), the crystallization of cuspidine is bulk nucleation and reaction-controlled two-dimensional growth at the crystallization primary stage followed by a diffusion-controlled two-dimensional growth process. The crystallization of CaF2 in mold flux originates from bulk nucleation and diffusion-controlled three-dimensional growth, which then transforms to two-dimensional growth. FE-SEM observations support these kinetic analysis results. The effective activation energy for cuspidine crystallization in the mold flux with higher B2O3 and Na2O contents increases as the crystallization progresses, and then decreases at the relative degree of crystallinity greater than 60 pct. The transition point of this trend approximately corresponds to the relative degree of crystallinity at which the crystallization mode of cuspidine transforms. For the mold fluxes with lower B2O3 and Na2O contents, the effective activation energy for cuspidine formation varies monotonically with the increase in the relative degree of crystallinity.open11149sciescopu

    The ARGOS Gene Family Functions in a Negative Feedback Loop to Desensitize Plants to Ethylene

    Get PDF
    Ethylene plays critical roles in plant growth and development, including the regulation of cell expansion, senescence, and the response to biotic and abiotic stresses. Elements of the initial signal transduction pathway have been determined, but we are still defining regulatory mechanisms by which the sensitivity of plants to ethylene is modulated. We report here that members of the ARGOS gene family of Arabidopsis, previously implicated in the regulation of plant growth and biomass, function as negative feedback regulators of ethylene signaling. Expression of all four members of the ARGOS family is induced by ethylene, but this induction is blocked in ethylene-insensitive mutants. The dose dependence for ethylene induction varies among the ARGOS family members, suggesting that they could modulate responses across a range of ethylene concentrations. GFP-fusions of ARGOS and ARL localize to the endoplasmic reticulum, the same subcellular location as the ethylene receptors and other initial components of the ethylene signaling pathway. Seedlings with increased expression of ARGOS family members exhibit reduced ethylene sensitivity based on physiological and molecular responses

    A Resonance Raman spectroscopic study on charge transfer enhancement in photosensitizers

    Get PDF
    The charge transfer (CT) properties of photosensitizers largely determine the photovoltaic performances of dye sensitized solar cells (DSSCs). Thus, understanding the CT properties of photosensitizers is key to further improving the performances of DSSCs. We herein investigated the underlying relationship be-tween the molecular structures and CT properties of the photosensitizers using resonance Raman (RR) spectroscopy and density functional theory (DFT) calculations. RR spectroscopy combined with DFT calculations showed that the presence of a triple bond (T-D1, T-D2, and T-D3) enhanced the degree of CT from the donor to the acceptor. In addition, the presence of electron donating groups (EDGs) on the donor (T-D2 and T-D3) further increased the CT properties of the donor. Moreover, DFT analysis based on the harmonic oscillator model of aromaticity revealed that the presence of a triple bond and an EDG increased the quinoidal character of the photosensitizer in the excited state. Finally, it was found that the degree of CT properties exhibited by each photosensitizer was in good agreement with the order of the DSSC performances. (c) 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    corecore