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Crystallization
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Both the Matusita equation and the modified Matusita
equation for estimating the activation energy associated
with non-isothermal crystallization were critically eval-
uated. The derivation for melts crystallization on cool-
ing indicates that, unlike for the crystallization that
occurs on heating, the term 1� exp (�DG/RT) in the
basic rate equation of crystal growth and the termR Ts

0 exp �E=RTð ÞdT depending on the initial temperature
of the cooling process cannot be neglected. It is dem-
onstrated that both the Matusita equation and its
modified expression are only valid to estimate the acti-
vation energy associated with the crystallization that
occurs on heating, but are inapplicable for the melt
crystallization that occurs on cooling. It is suggested
that the isoconversional methods of Friedman and Vy-
azovkin should be alternative to determine effective
activation energy for melt crystallization that occurs on
cooling.
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Various models have been developed to estimate the
activation energy associated with the non-isothermal
crystallization from thermal analysis data, including
Kissinger equation,[1] Ozawa equation,[2] modified Oza-
wa-Chen equation,[3] and Matusita equations.[4,5]

Among these models, Kissinger equation[1] and Matu-
sita equations[4,5] are the most widely used approaches
to determine the activation energy for the crystallization
that occurs on heating.[6–10] Moreover, they are applied
frequently for the non-isothermal crystallization of

polymer melts[11–15] and metallurgical slags[16,17] that
occurs on cooling.
Matusita and Sakka[4] emphasized that the physical

meaning of the crystallization activation energy deter-
mined by the Kissinger equation[1] is obscure because
the crystallization of glass is advanced by both nucle-
ation and crystal growth, rather than an n-th order
reaction. Therefore, they proposed the following gen-
eralized expression to determine the activation energy
for crystal growth:[4]

ln
bn

T2
p

 !

¼ � mE

RTp
þ constant ½1�

where b is the heating rate, E is the activation energy
for crystal growth, R is the ideal gas constant, Tp is
the crystallization peak temperature, n and m are the
numerical factors that depend on the crystallization
mechanism and summarized in Reference 18.
A few years later, Matusita et al.[5] derived a more

precise equation (i.e., Eq. [2]) than Eq. [1] by improving
the accuracy of mathematical approximation in deriving
the generalized expression to estimate the activation
energy for crystal growth

ln � ln 1� xð Þ½ � ¼ �n ln b� 1:052
mE

RT
þ constant ½2�

where x is the volume fraction of crystallized phase at
a given temperature T. In general, both Eq. [1] and
Eq. [2] are called Matusita equation. To facilitate the
evaluation of Matusita models in this article, Eqs. [1]
and [2] are hereinafter designated as the Matusita
equation and the modified Matusita equation, respec-
tively.
Since the crystallization mechanism is involved in

Matusita equation and its modified expression, these
two models have been widely used to determine the
activation energy for crystal growth. It should be
stressed that both the Matusita equation and the
modified Matusita equation were originally derived
from the expressions for the crystallization that occurs
on heating. However, many practical processes of non-
isothermal crystallization proceed on cooling, such as
some kinds of polymer melts, and mold fluxes in
continuous casting of steel. Therefore, it is highly
needed to ascertain that whether the Matusita equation
and the modified Matusita equation are applicable in
estimating the activation energy for melts crystalliza-
tion.
In a series of papers,[4,5,19–21] Matusita and

co-workers made a detailed derivation for their models,
i.e., Eqs. [1] and [2]. Matusita equation was derived
from the basic equation of crystal growth rate[19]

U ¼ dr

dt
¼ b

dr

dT
¼ U0 exp �E=RTð Þ 1� exp �DG=RTð Þ½ �

½3�

where U0 is the pre-exponential factor, DG is the crys-
tallization free energy, and r is the radius of a crystal
particle. If the temperature is much higher than that of
maximum growth rate in the heating process, then the
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temperature dependence of the term 1� exp (�DG/RT)
is negligibly small compared with that of the term
exp (�E/RT).[19] Thus, Eq. [3] can be rewritten as

U ¼ U0 exp �E=RTð Þ ½4�

During the heating of a glass from room temperature
Tr to a certain temperature T, the nucleation and crystal
growth will occur successively. The radius r of crystal
particle can be calculated by substituting Eq. [4] into
Eq. [3].

r ¼
Z T

Tr

U

b
dT ¼ U0

b

Z T

0

exp �E=RTð ÞdT
�

�
Z Tr

0

exp �E=RTð ÞdT
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Because the upper limit of the integral
R Tr

0 exp �E=ð
RTÞdT in Eq. [5] is much smaller than that of the term
R T
0 exp �E=RTð ÞdT during glass crystallization, the term
R Tr

0 exp �E=RTð ÞdT is negligibly small compared with

the term
R T
0 exp �E=RTð ÞdT. Therefore, Eq. [5] can be

simplified as the following equation.

r ¼ U0

b

Z T

0

exp �E=RTð ÞdT ½6�

Because the integral term
R T
0 exp �E=RTð ÞdT in Eq. [6]

cannot be expressed by compounds of elementary func-
tions, a rough approximation is made to obtain the
Matusita equation, and then Eq. [6] is approximated to

r ¼ U0

b

Z T

0

exp �E=RTð ÞdT ffi r0
a
exp �E=RTð Þ ½7�

In the derivation by Matusita and Sakka,[19] the case
where the crystal growth was three dimensional and
controlled by interface reaction was taken as an example
to derive the generalized Matusita equation. In this case,
the crystallization rate dx

dt is expressed as

dx

dt
¼ 1� xð ÞN4pr2

dr

dt
½8�

where N is the number of nuclei formed per unit vol-
ume and x is the relative degree of crystallinity.

Inserting Eqs. [3], [4], and [7] into [8], the following
equation can be obtained.

dx

dt
¼ 4pNU0 1� xð Þ r

2
0

b2
exp � 3E

RT

� �

½9�

In a more generalized expression, Eq. [9] is expressed
as

dx

dt
¼ Ab� n�1ð Þ 1� xð Þkexp �mE

RT

� �

½10�

where k = 1 for bulk nucleation and k ¼ 2
3 for surface

nucleation.

The crystallization rate reaches the maximum at
temperature Tp where the second derivative of the
relative degree of crystallinity x equals zero.

d

dt

dx

dt

� �

¼ 0 ½11�

By solving equation set of Eqs. [10] and [11], the
following equation can be derived.
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RTp
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Taking the logarithm of Eq. [12], Matusita equation
can be derived as Eq. [1]. The activation energy E can be
evaluated from the slope of the linear fitted plot of
ln (bn/Tp

2) vs 1/Tp from Eq. [1].
In a few years’ time, Matusita et al.[5] applied a closer

approximation by employing Doyle’s p-function[22] to

integrate the term
R T
0 exp �E=RTð ÞdT in Eq. [6]. As a

consequence, Eq. [6] was approximated to Eq. [13]

r ¼ U0E

bR
exp �5:330� 1:052

E

RT

� �

½13�

Taking the integration of Eq. [8], the following
equation is obtained.

� ln 1� xð Þ ¼ 4

3
pNr3 ½14�

For a heating process, the radius of a crystal particle r
in Eq. [14] was replaced by Eq. [13]. It gives

� ln 1� xð Þ ¼ 4

3
pN

U0E

bR

� �3

� exp �3� 5:330� 3� 1:052
E

RT

� �

½15�

þ constant

In a more generalized expression, Eq. [15] is expressed
as

� ln 1� xð Þ ¼ K1b
�n exp �1:052m E

RT

� �

þ constant

½16�

Equation [16] can be rewritten as Eq. [2] for estimat-
ing the activation energy for crystal growth. Because the
crystallized fraction x at the peak temperatures Tp on
differential scanning calorimetry (DSC) [or differential
thermal analysis (DTA)] curves is almost constant
irrespective of cooling rate b,[5] Eq. [2] is available at
the peak temperature Tp. The activation energy can be
calculated from the slope �1.052 mEg/nR provided that
the numerical factors n and m are known.
However, for the case of crystallization from the melt

in a cooling process, the crystallization commences from
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a elevated temperature. The relationship |DG|<<RT
cannot be met in this case.[23] Therefore, Eq. [3] cannot
be simplified in the Arrhenius form as Eq. [4] under this
condition. In addition, the radius r of crystal particle in
this case can be expressed by the following equation:

r ¼
Z T

Ts

U

b
dT ¼ U0

b

Z T

0

exp �E=RTð ÞdT
�

�
Z Ts

0

exp �E=RTð ÞdT
� ½17�

where Ts is the starting temperature of the cooling
process. Because Ts is greater than any certain temper-

ature T, the value of the term
R Ts

0 expð�E=RTÞdTÞ in
Eq. [18] is larger than

R Ts

0 exp �E=RTð ÞdT) in Eq. [17].

Therefore, the term
R Ts

0 expð�E=RTÞdTÞ cannot be ne-
glected, and consequently, Eq. [17] cannot be approxi-
matively simplified as Eq. [6] as Eq. [5] for the heating
process.

It can be concluded that when the crystallization
occurs from melt in a cooling process, the term
1� exp (�DG/RT) in the basic rate equation of crystal
growth and the term

R Ts

0 exp �E=RTð ÞdT depending on
the starting temperature of the cooling process cannot
be neglected. In this case, the radius r of a crystal
particle should be expressed as

Consequently, Eq. [18] cannot be simplified as Eq. [7]
or Eq. [13], resulting in the failure in obtaining general-
ized expression Eq. [1] or Eq. [2] for melts crystallization
based on the above derivation. Therefore, it can be
concluded that the application of Eq. [1] or Eq. [2] in
determining the activation energy for crystallization that
occurs on cooling is questionable.

For the cooling process, the cooling rate b will be
expressed with negative numbers. Because both the
Matusita equations and the Kissinger equation require
taking the logarithm of b, they cannot be directly
applied to crystallization of melts that occurs on cooling
(b<0). This problem has been bypassed by dropping off
the minus sign for melts crystallization in other stud-
ies.[11�17] Actually, there have been questionable
reports[16, 17] regarding positive activation energy for
melt crystallization determined by the Matusita equa-
tions, where the negative signs of cooling rates were
deliberately dropped in calculation. Similarly, some
researchers[11�15] just dropped the negative sign of the
cooling rates in calculation using Kissinger equation,
and consequently, they obtained positive values of

activation energy for melts crystallization, which has
been proved to be erroneous by later research.[24]

Vyazovkin[24] made a detailed assessment of the Kis-
singer equation and demonstrated that the Kissinger
equation is inapplicable to the processes that occur on
cooling. On the contrary, in recent years, various studies
have demonstrated that the activation energy for the
cooling process should be negative; the crystallization
that occurs during the cooling process shows anti-
Arrhenius behavior.[25] This effective activation energy
does not have the usual meaning of an energy barrier in
this case but reflects the temperature dependence of the
temperature coefficient of the crystallization rate.
According to Hoffman–Lauritzen theory,[26] the crys-

tallization rate passes through a maximum for a given
temperature, Tmax. If the crystallization temperature Tc

lies in the range of Tmax to melting temperature Tm, the
crystallization will follow an anti-Arrhenius behavior
that is characterized by negative values of the temper-
ature coefficient represented by the effective activation
energy in crystallization rate equation (for heating
process, i.e., Eq. [9]). The crystallization rate is con-
trolled by a nucleation rate whose temperature coeffi-
cient is negative. Below Tmax, one could observe the
regular Arrhenius behavior that is characterized by
positive values of the temperature coefficient. Under this
condition, the crystallization rate becomes controlled by

diffusion, which has positive values of the effective
activation energy. At the temperature corresponding to
maximum crystallization rate Tmax, the activation
energy for crystallization is close to zero.
It has been found that there are three different

crystallization kinetic regimes. According to Hoffman–
Lauritzen theory,[26] regime I is strongly dependent on
the nucleation rate because the primary crystalline is
formed from a single nucleus and grows linearly. As the
crystallization kinetic regime transits from regime I to
regime II, it leads to a downward break in the
crystallization growth rate because the rate of substrate
completion becomes approximately of the same order as
the surface nucleation rate during regime II. At higher
supercooling, the surface nucleation rate becomes very
fast and the rate of crystal growth is then governed by
the rate of substrate completion. This latter regime is
commonly called regime III. The regime IIfiIII transi-
tion is accompanied by an upswing break in the growth
rate curve. The Hoffman–Lauritzen theory also gives a
dependence of the linear growth rate U, which can be
expressed as

r ¼ U0 exp �5:330ð Þ
bR

�
E exp �1:052 E

RT

� �

� E exp �1:052Eþ DG
RT
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U ¼ U0 exp
�Ex

R T� T1ð Þ

� �

exp
�Kg

TDTf

� �

½19�

where Ex is the effective activation energy for crystalli-
zation at a given relative degree of crystallinity x, T¥
is a hypothetical temperature where motion associated
with viscous flow ceases that is taken 30 K (30 �C) be-
low the glass transition temperature Tg, DT = Tm�T
is the undercooling, Tm is the equilibrium melting tem-
perature, and f = 2 T/(Tm+T) is the correction fac-
tor. The kinetic parameter Kg associated with the
nucleation process has the following form

Kg ¼
gbrreTm

DhfkB
½20�

where b is the surface nucleus thickness, r is the lateral
surface free energy, re is the fold surface free energy,
Dhf is the heat of fusion per unit volume of crystal, kB
is the Boltzmann constant, and g takes the value 4 for
crystallization regimes I and III, and 2 for regime II.

The parameters of the Hoffman–Lauritzen equation
can be evaluated by fitting the Ex vs T dependence to the
following equation, according to the method proposed
by Vyazovkin and Sbirrazzuoli:[27]

ExðTÞ ¼
UT2

T� T1ð Þ2
þ
KgR T2

m � T2 � TmT
� �

Tm � Tð Þ2T
½21�

where U is the parameter associated with diffusion. It
can be demonstrated that the second term
KgR T2

m�T2�TmTð Þ
Tm�Tð Þ2T in Eq. [20] is negative in the tempera-

ture range between 0.618Tm and Tm. Furthermore, the
absolute value of this term quickly increases when
approaching Tm. Based on these facts, it can be pre-
dicted that the effective activation energy Ex has large
negative values at low extents of crystallization that
correspond to small undercooling.

The differential isoconversional method of Fried-
man[28] and the advanced integral isoconversional
method of Vyazovkin[24] can be considered as alterna-
tives to estimate the activation energy for melts crystal-
lization. The Friedman equation is expressed as

ln
dx

dt

� �

x;i

¼ � Ex

RTx;i
þ constant ½22�

where Tx,i is the set of absolute temperatures related
to a given relative degree of crystallinity at different
cooling rates and the subscript i is the ordinal number
of individual cooling rate.

Vyazovkin method has been designed to treat the
kinetics that occurs under arbitrary variation in tem-
perature. For a series of n experiments carried out under
different temperature programs Ti(t), the activation
energy is determined at any particular value of relative
degree of crystallinity x by finding Ex, which minimizes
the following function

U Exð Þ¼
Xn

i¼1

Xn

j 6¼i

J Ex;TiðtxÞ½ �
J Ex;TjðtxÞ
� 	 ½23�

Friedman equation and Vyazovkin equation have
been extensively applied to evaluate the effective activa-
tion energy for the non-isothermal melt crystallization
that occurs on cooling.[29�33]

The current communication presents a commentary
on the Matusita equation and the modified Matusita
equation. The derivation of the Matusita equation and
its modified expression for melts crystallization on
cooling indicates that, unlike for the crystallization that
occurs on heating, the basic rate equation of crystal
growth cannot be simplified as the Arrhenius form, and
the term

R Ts

0 exp �E=RTð ÞdT depending on the initial
temperature of the cooling process cannot be neglected.
It is demonstrated that both Matusita equation and
modified Matusita equation are inapplicable to estimate
the activation energy associated with the melt crystal-
lization that occurs on cooling. The isoconversional
methods developed by Friedman and Vyazovkin are
recommended to determine effective activation energy
for melts crystallization that occurs on cooling. The
isoconversional method of Friedman has been success-
fully employed to determine the effective activation
energy for non-isothermal crystallization of lime-alu-
mina-based mold fluxes that occurs on cooling in the
authors’ more recent study.[34]
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