5,800 research outputs found
Modeling Viscosity of Molten Slags and Glasses
Récemment, un nouveau modÚle de viscosité a été développé dans ce laboratoire pour des
laitiers liquides monophasiques relatifs au systĂšme CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3[27,
81, 82]. Dans ce modÚle, la viscosité est liée à la structure du laitier, caractérisée par les
concentrations et la connectivité des espÚces Qi. La structure est calculée à son tour à partir de la
description thermodynamique du liquide Ă lâaide du ModĂšle Quasichimique ModifiĂ©[231, 232] et
de la banque de données thermodynamiques de FactSage[14]. Le modÚle développé prend en
compte, en utilisant la connectivitĂ© des espĂšces Qi, la formation dâun rĂ©seau de silice ou dâoxyde
de bore qui a un effet marqué sur la viscosité.
Un modÚle de viscosité a été développé pour les systÚmes MOx, MOx-SiO2, MOx-B2O3 et
B2O3-SiO2 (MOx = oxyde basique), et quelques paramĂštres unaires et binaires avec une
dĂ©pendance en tempĂ©rature dâArrhenius ont Ă©tĂ© obtenus simultanĂ©ment Ă partir des donnĂ©es de
viscosité disponibles pour tous les liquides binaires et ternaires. Le modÚle comprend deux
paramĂštres ternaires supplĂ©mentaires pour chaque systĂšme ternaire MOxâAl2O3âSiO2 Ă base de
Al2O3 pour lequel a lieu un Effet de Compensation de Charge (oĂč Al3+ occupe une coordination
tĂ©traĂ©drique et sâinsĂšre dans le rĂ©seau de silice avec un cation basique M restant au voisinage de
Al3+ pour compenser la charge manquante). La viscosité de laitiers multicomposants CaO-MgOK2O-
Na2O-Al2O3-SiO2-B2O3 [27, 81, 82] a ensuite Ă©tĂ© prĂ©dite par le modĂšle sans lâajout de
paramÚtres ajustables supplémentaires, et elle est en bon accord avec les mesures disponibles en
deçà des barres dâerreur expĂ©rimentales.
Cependant, le modÚle ne pouvait pas reproduire le comportement complexe des données
de viscosité mesurées dans la région riche en oxyde alcalin des liquides MO0.5-SiO2, ou pour des
liquides multicomposants Ă base dâoxydes alcalins. Dans le prĂ©sent travail, le modĂšle est modifiĂ©
pour reproduire le comportement complexe de la viscosité des systÚmes oxyde alcalin-silice du
cĂŽtĂ© riche en oxyde alcalin. Ce comportement est attribuĂ© aux agrĂ©gats en forme dâanneaux
formĂ©s par les espĂšces Q2 et Q3. Lâajout dâun paramĂštre binaire supplĂ©mentaire MOx -Si
ERing pour
chaque systĂšme oxyde alcalin-silice permet de prendre en compte la contribution en excĂšs Ă la
viscositĂ© due Ă la polymĂ©risation des espĂšces Q2 et Q3 sous la forme dâanneaux de grande taille.
vi
Aussi, dans le présent travail, la viscosité de laitiers liquides contenant PbO, ZnO, MnO et
TiOx a Ă©tĂ© rĂ©visĂ©e et modĂ©lisĂ©e Ă lâaide du modĂšle modifiĂ©. Seulement 6 paramĂštres du modĂšle
liĂ©s Ă chaque oxyde MOx (M = Pb, Zn, Mn) sont requis pour reproduire la viscositĂ© de liquides Ă
base de silice. Deux paramÚtres ( MOx A et MOx E ) décrivent la viscosité du liquide pur MOx; deux
paramĂštres binaires ( 1,1
MO -Si MO -Si et x x
E ER ) décrivent la viscosité de chaque liquide MOx - SiO2; et
finalement deux paramĂštres supplĂ©mentaires reprĂ©sentent lâĂ©nergie de Gibbs MAl2O4 ÎG de
formation des âespĂšcesâ Al de coordination tĂ©traĂ©drique entrant dans le rĂ©seau de silice avec une
compensation de charge due au cation M. Ces deux paramĂštres supplĂ©mentaires sont obtenus Ă
partir des viscosités expérimentales des liquides MOx-Al2O3-SiO2. La viscosité de laitiers
multicomposants contenant MOx est ensuite prĂ©dite par le modĂšle sans lâajout de paramĂštres
ajustables supplémentaires.
Les liquides Ă base de silice contenant TiOx ont requis quatre paramĂštres ( TiO2 A , TiO1.5 A ,
TiO2 E et TiO1.5 E ) décrivant la viscosité des liquides purs TiO2 et TiO1.5, et quatre paramÚtres
binaires ( 2
1,1
TiO -Si E , TiO2 -Si
E R , 1.5
1,1
TiO -Si E et TiO1.5 -Si
E R ) décrivant la viscosité des liquides TiO2-SiO2 et
TiO1.5-SiO2. Aucune donnĂ©e de viscositĂ© nâĂ©tait disponible pour rendre compte de lâEffet de
Compensation de Charge entre TiOx, Al2O3 et MOx (TiO2-Al2O3 et Ti2O3-MOx), oĂč MOx est un
oxyde basique, et ainsi aucun paramĂštre du modĂšle nâa Ă©tĂ© ajoutĂ© pour cet Effet de Compensation
de Charge. La viscosité de laitiers multicomposants contenant TiO2 et Ti2O3 est ensuite prédite
par le modĂšle sans lâajout de paramĂštres ajustables supplĂ©mentaires.
En guise de test du modÚle, les données de viscosité expérimentales disponibles pour tous
les sous-systĂšmes du systĂšme SiO2âAl2O3âCaOâMgOâNa2OâK2OâPbOâZnOâMnOâTiOx ont
Ă©tĂ© rassemblĂ©es et utilisĂ©es pour calibrer le modĂšle. LâĂ©cart entre les mesures et les viscositĂ©s
prĂ©dites par le modĂšle nâexcĂšde pas la dispersion des points expĂ©rimentaux des diffĂ©rents auteurs.
En particulier, le modÚle prédit la viscosité de laitiers multicomposants à base de silice et de
verres commerciaux avec une précision comparable à celle des équations de régression obtenues
à partir des données expérimentales sur les gammes de composition restreintes de ces liquides.
Le modÚle est aussi étendu dans le présent travail pour décrire et prédire la viscosité de
liquides oxy-fluorés contenant MFx (M = Ca, Mg, Na, K et Al). Une banque de données de
vii
solution simplifiée utilisant un modÚle polynÎmial avec les énergies de Gibbs de chaque liquide
pur dâoxyde et de fluorure a Ă©tĂ© dĂ©veloppĂ©e, permettant ainsi de calculer approximativement la
composition globale âĂ©quilibrĂ©eâ Ă partir dâune composition initiale donnĂ©e des liquides oxyfluorĂ©s.
Les rÎles structuraux de MFx (M = Ca, Mg, Na, K et Al) sont examinés, et MFx est
considĂ©rĂ© comme un modificateur de rĂ©seau dans les liquides Ă base de silice ou dâoxyde de bore,
avec des effets de rupture du rĂ©seau de silice ou dâoxyde de bore que nous avons simplement
supposĂ©s identiques Ă ceux des oxydes basiques contenant le mĂȘme cation M.
Un modÚle de viscosité a été développé pour les systÚmes MFx, MFx-SiO2 et MFx-B2O3
(M = Ca, Mg, Na, K et Al), et quelques paramÚtres unaires et binaires ont été obtenus
simultanément à partir des données de viscosité disponibles pour tous les liquides binaires et
ternaires. Aucun effet de compensation de charge nâa Ă©tĂ© observĂ© entre MFx et Al2O3, et ainsi le
modÚle reproduit les données expérimentales pour les liquides binaires et ternaires sans appliquer
dâeffet de compensation de charge entre MFx et Al2O3. En plus des deux paramĂštres du modĂšle
requis pour chaque liquide MFx-B2O3 (oĂč MFx est un fluorure basique), les paramĂštres
additionnels m(MB4FO6) ÎG , m(MB4FO6) E et m sont nĂ©cessaires lorsque MFx est un fluorure alcalin de
façon Ă rendre compte de la formation dâagrĂ©gats au voisinage de la composition du tĂ©traborate.
Ces paramĂštres supplĂ©mentaires reprĂ©sentent la taille et lâĂ©nergie de Gibbs de formation des
agrĂ©gats ainsi que leur contribution Ă lâĂ©nergie dâactivation dâĂ©coulement visqueux. Les donnĂ©es
de viscositĂ© disponibles pour tous les sous-systĂšmes du systĂšme MFxâSiO2âB2O3âAl2O3âCaOâ
MgOâNa2OâK2OâPbOâMnOâTiOy (M = Ca, Mg, Na, K et Al) sont examinĂ©es. La viscositĂ© de
liquides multicomposants et de liquides ternaires MFxâNOyâSiO2 (oĂč MFx et NOy sont des
fluorures et des oxydes basiques) est prédite par le modÚle uniquement à partir des paramÚtres
unaires, binaires et ternaires. LâĂ©cart entre les mesures et les viscositĂ©s prĂ©dites nâexcĂšde pas la
dispersion des points expĂ©rimentaux et les barres dâerreur expĂ©rimentales. La capacitĂ© de
prédiction du modÚle a également été testée sur plusieurs liquides de flux de moule industriels, et
nous pensons quâelle est satisfaisante compte tenu des incertitudes expĂ©rimentales des donnĂ©es de
viscosité.
Le modĂšle dĂ©veloppĂ© avec une dĂ©pendance en tempĂ©rature dâArrhenius pour la viscositĂ©
des liquides oxy-fluorés est étendu dans le présent travail pour prendre en compte la dépendance
en tempĂ©rature non-Arrhenienne des donnĂ©es de viscositĂ© mesurĂ©es de la rĂ©gion vitreuse jusquâĂ
viii
la rĂ©gion liquide. A lâaide de toutes les donnĂ©es disponibles pour les sous-systĂšmes du systĂšme
CaO-MgO-Na2O-K2O-ZnO-PbO-Al2O3-B2O3-SiO2, les valeurs des paramĂštres du modĂšle unaires
et binaires MOx A , MOx E , MOx Si
ER â et x
.
MO -Si
Ei j ont Ă©tĂ© rĂ©optimisĂ©es simultanĂ©ment avec lâajout des
paramĂštres unaires et binaires non-Arrheniens MOx T , MOx n , MOx -Si m , MOx -Si T et MOx -Si n (M = Ca,
Mg, Pb, Zn et Al). De façon Ă prendre en compte lâEffet de Compensation de Charge pour les
verres contenant Al2O3, nous avons ajouté deux paramÚtres supplémentaires dans la fonction
MAlxOy ÎG correspondant Ă la formation dâune espĂšce Ă Charge CompensĂ©e telle que 2 4 CaAl O ou
2 NaAlO . Cette modification simple du modÚle correspond à un bon accord (en deçà des barres
dâerreur expĂ©rimentales) avec la plupart des donnĂ©es de viscositĂ© pour les systĂšmes ternaires et
dâordre supĂ©rieur contenant Al2O3.
A partir des données de viscosité et des études micrographiques disponibles pour les
verres binaires MOx-B2O3, il semble que la formation dâagrĂ©gats mĂ©tastables dâapparence solide
soit favorable dans ces verres binaires (MOx = oxyde basique). Pour modéliser la formation de
ces agrĂ©gats dâapparence solide dans la rĂ©gion vitreuse, nous avons employĂ© des paramĂštres pour
les Ă©nergies de Gibbs m(MBxOy) ÎG de formation des agrĂ©gats et pour lâeffet de taille des agrĂ©gats.
Au total, cinq paramÚtres binaires sont utilisés pour reproduire les données de viscosité dans
chaque systĂšme binaire oxyde basique-oxyde de bore : ( )
*
B MOx A , ( )
*
B MOx E , m , m(MBxOy) ÎG et
m(MBxOy) E . La taille moyenne m dâun agrĂ©gat a Ă©tĂ© optimisĂ©e diffĂ©remment suivant le verre
binaire MOx-B2O3. Aussi, les agrĂ©gats dâapparence solide sont modĂ©lisĂ©s Ă partir des donnĂ©es de
viscosité pour les verres binaires MOx-B2O3. Seuls les paramÚtres du modÚle B A , B E , B T et B n
pour B2O3 pur, et AlO1.5 -B T et AlO1.5 -B n pour le systÚme binaire Al2O3-B2O3 ont été appliqués au
modÚle étendu pour reproduire le comportement en viscosité non-Arrhenien des systÚmes
contenant B2O3.
Les données de viscosité disponibles pour les sous-systÚmes du systÚme B2O3-CaO-MgONa2O-
K2O-ZnO-PbO-Al2O3-SiO2 ont été examinées. Nous démontrons que le modÚle étendu
reproduit bien le comportement complexe des données expérimentales pour les systÚmes binaires
et ternaires de la rĂ©gion vitreuse jusquâĂ la rĂ©gion liquide, et prĂ©dit la viscositĂ© de verres
ix
multicomposants en deçà des barres dâerreur expĂ©rimentales. En particulier, le modĂšle Ă©tendu
peut ĂȘtre utilisĂ© pour obtenir de bonnes estimations de la viscositĂ© de verres multicomposants, de
magmas, de laves et de verres commerciaux. Nous pensons que ce modĂšle Ă©tendu reproduit en
deçà des barres dâerreur expĂ©rimentales non seulement la dĂ©pendance en tempĂ©rature mais aussi
la dĂ©pendance en composition des donnĂ©es de viscositĂ© disponibles, de la rĂ©gion vitreuse jusquâĂ
la région liquide.
Le modĂšle Ă©tendu sâapplique sur la gamme de tempĂ©rature complĂšte allant de la rĂ©gion
vitreuse jusquâĂ la rĂ©gion liquide. Pour la rĂ©gion liquide, le modĂšle non Ă©tendu est lĂ©gĂšrement
supérieur au modÚle étendu. En résumé, le modÚle de viscosité reproduit maintenant toutes les
donnĂ©es de viscositĂ© disponibles pour les liquides et les verres relatifs au systĂšme MFxâSiO2â
B2O3âAl2O3âCaOâMgOâNa2OâK2OâPbOâZnOâMnOâTiOy (M = Ca, Mg, Na, K et Al) en deçĂ
des barres dâerreur expĂ©rimentales, Ă toute composition et sur la gamme de tempĂ©rature allant de
300oC Ă 2000oC.
----------
Recently, a new viscosity model was developed in this laboratory to reproduce the
viscosity of single-phase oxide melts for the system CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3[27,
81, 82]. In this model, the viscosity is related to the structure of the melt characterized by the
amounts and connectivity of Qi-species. The structure in turn is calculated from the
thermodynamic description of the melt using the Modified Quasichemical Model[231, 232] and
the FactSage thermodynamic database[14]. Most importantly, the model takes into account the
formation of a silicate or borate network which has a profound effect on the viscosity using the
connectivity of Qi-species.
The viscosity model for the systems MOx, MOx-SiO2, MOx-B2O3 and B2O3-SiO2 (M =
Basic oxides) was developed, and a few unary and binary parameters with Arrhenian temperature
dependence were simultaneously obtained from assessments of the viscosity data of all available
binary and ternary melts. For each Al2O3-containing ternary system MOxâAl2O3âSiO2 exhibiting
the Charge Compensation Effect (where Al3+ assumes a tetrahedral coordination and enters the
silica network with a basic cation M staying close to Al3+ to compensate the missing charge) the
model incorporates two additional ternary parameters. The viscosity of multi-component melts
CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3 [27, 81, 82] was then predicted by the model without
any additional adjustable model parameters and is in good agreement with available
measurements within experimental error limits.
However, the model could not reproduce the complex behavior of the viscosity data
measured in the alkali-rich side of MO0.5-SiO2 melts and multi-component melts containing alkali
oxides. In the present work, the model is modified to reproduce the complex behavior of the
viscosity on the alkali-rich side of the alkali-silica systems. This behavior is attributed to ring
clusters formed by Q2- and Q3-species. An excess contribution to the viscosity due to
polymerization of Q2- and Q3-species into large rings is taken into account by the introduction of
one additional binary parameter MOx -Si
ERing for each alkali-silica system.
Also in the present work, with the modified model, the viscosity of molten slags
containing PbO, ZnO, MnO and TiOx have been reviewed and modeled. In order to reproduce the
xi
viscosity of the silicate melts, only 6 model parameters related to each oxide MOx (M = Pb, Zn,
Mn) are required. Two parameters, MOx A and MOx E , describe the viscosity of pure liquid MOx;
two binary parameters, 1,1
MO -Si MO -Si and x x
E ER , describe the viscosity of each MOx -SiO2 melt; and,
finally, two more parameters represent the Gibbs energy, MAl2O4 ÎG , of formation of tetrahedrallycoordinated
Al âspeciesâ which enter the silica network and are charge-compensated by M. The
latter two parameters are obtained from the experimental viscosities of MOx-Al2O3-SiO2 melts.
The viscosity of multicomponent melts containing MOx is then predicted by the model without
any additional adjustable model parameters.
Silicate melts containing TiOx required four parameters, TiO2 A , TiO1.5 A , TiO2 E and
TiO1.5 E which describe the viscosity of pure liquid TiO2 and TiO1.5; and four binary parameters,
2
1,1
TiO -Si E , TiO2 -Si
ER , 1.5
1,1
TiO -Si E and TiO1.5 -Si
ER which describe the viscosity of TiO2-SiO2 and TiO1.5-SiO2
melts. No viscosity data were available to account for the Charge Compensation Effect among
TiOx, Al2O3 and MOx (TiO2-Al2O3 and Ti2O3-MOx), where M is a basic oxide, and thus no model
parameters were applied for the Charge Compensation Effect. The viscosity of multicomponent
melts containing TiO2 and Ti2O3 is then predicted by the model without any additional adjustable
model parameters.
To test the model, available experimental viscosity data of all sub-systems of the SiO2â
Al2O3âCaOâMgOâNa2OâK2OâPbOâZnOâMnOâTiOx system were collected and used to
calibrate the model. The deviation of the available experimental data from the viscosities
predicted by the model does not exceed the scatter of experimental points among different
authors. In particular, the model predicts the viscosity of multicomponent silicate melts and
commercial glass melts with an accuracy similar to the accuracy of the regression equations
which were fitted to the experimental data over the narrow composition ranges of these melts.
The model is also extended in the present work to describe and predict the viscosities of
oxy-fluoride melts containing MFx (M = Ca, Mg, Na, K and Al). A simple solution database
using a polynomial solution model with Gibbs energies of each pure liquid oxide and fluoride
was developed to roughly calculate the overall âequilibrated compositionâ from given initial
compositions of oxy-fluoride melts. Structural roles of MFx (M = Ca, Mg, Na, K and Al) are
xii
reviewed and regarded as network modifiers in silicate or borate melts and simply approximated
to have the same breaking effects on silicate or borate networks as basic oxides containing the
same cations.
The viscosity model for the system MFx, MFx-SiO2 and MFx-B2O3 (M = Ca, Mg, Na, K
and Al) was developed and a few unary and binary parameters were simultaneously obtained
from viscosity data of all available binary and ternary melts. No charge compensation effect
between MFx and Al2O3 was observed, and thus the model reproduces the experimental data for
binary and ternary melts without any applying charge compensation effect between MFx and
Al2O3. In addition to the two model parameters that are required for each MFx-B2O3 melt, where
MFx is a basic fluoride, the further parameters m(MB4FO6) ÎG , m(MB4FO6) E and m are needed when MFx
is an alkali fluoride to account for the formation of clusters near the tetraborate composition. The
additional parameters represent the size and Gibbs energy of formation of these clusters and their
contribution to the activation energy of the viscous flow. The available viscosity data for all subsystems
of MFxâSiO2âB2O3âAl2O3âCaOâMgOâNa2OâK2OâPbOâMnOâTiOy melts (M = Ca,
Mg, Na, K and Al) are reviewed. The viscosity of multicomponent melts and of ternary melts
MFxâNOyâSiO2, where MFx and NOy are basic fluorides and oxides, is predicted by the model
solely from the unary, binary and ternary parameters. The deviation from the available
experimental data does not exceed the scatter of the experimental measurements and
experimental error limits. The predictive ability of the model has been further tested on several
industrial mold flux melts and is believed to be in good agreement with the viscosity data within
experimental error limits.
The developed model with Arrhenian temperature dependence for the viscosity of oxyfluoride
melts is further extended in the present work to take into account non-Arrhenian
temperature dependence of the viscosity data measured from the glass to the melt regions. Using
data for all available sub-systems of the CaO-MgO-Na2O-K2O-ZnO-PbO-Al2O3-B2O3-SiO2
system, the values of unary and binary model parameters MOx A , MOx E , MOx Si
ER â and x
.
MO -Si
Ei j were
re-optimized simultaneously with the addition of the non-Arrhenian unary and binary parameters
MOx T , MOx n , MOx -Si m , MOx -Si T and MOx -Si n (M = Ca, Mg, Pb, Zn and Al). In order to take into
account the Charge Compensation Effect for glasses containing Al2O3, two more parameters were
xiii
added to the function of MAl xOy ÎG for the formation of Charge Compensated species such as
2 4 CaAl O or 2 NaAlO . This simple modification of the model results in a good agreement with
most of the viscosity data of ternary and high-order systems containing Al2O3 within
experimental error limits.
From available viscosity data and micrographic studies for binary MOx-B2O3 glasses,
metastable solid-like clusters seem to form favorably in the binary MOx-B2O3 glasses (M = Basic
Oxides). In order to model the formation of these solid-like clusters in the glass region, we
employed parameters for the Gibbs energies m(MBxOy) ÎG of formation of clusters and for the size
effect of clusters. A total of five binary parameters are used to reproduce the viscosity data in
each basic oxide-boron oxide binary system: ( )
*
B MOx
A , ( )
*
B MOx
E , m , m(MBxOy) ÎG and m(MBxOy) E . The
average size of the cluster, m , was optimized differently according to the binary MOx-B2O3 glass.
Also, the solid-like clusters are modeled according to the viscosity data of the binary MOx-B2O3
glasses. Only the model parameters B A , B E , B T and B n for pure B2O3 ,and AlO1.5 -B T and
AlO1.5 -B n for the binary Al2O3-B2O3 system were applied to the extended model to reproduce the
non-Arrhenian viscosity behavior of the systems containing B2O3.
The available viscosity data for the sub-systems of the B2O3-CaO-MgO-Na2O-K2O-ZnOPbO-
Al2O3-SiO2 system have been reviewed. It is demonstrated that the extended model
reproduces well the complex behavior of the experimental data for the binary and ternary systems
from the glass region to the melt region and predicts the viscosities of multi-component glasses
within experimental error limits. In particular, the extended model can be used to provide good
estimates of the viscosities of multicomponent glasses, magmas, lavas and commercial glasses.
Most importantly, the extended model is believed to reproduce not only the temperature
dependence but also composition dependence of available viscosity data within experimental
error limits from the glass to the melt region.
The extended model applies over the entire temperature range from the glass region to the
melt region. For the melt region, the unextended model is slightly superior to the extended model.
xiv
In summary, the viscosity model now reproduces all available viscosity data for melts and
glasses for the system MFxâSiO2âB2O3âAl2O3âCaOâMgOâNa2OâK2OâPbOâZnOâMnOâTiOy
(M = Ca, Mg, Na, K and Al) within experimental error limits at all compositions and over the
temperature range from 300 to 2000ÂșC
Ethanol Extract of the Flower Chrysanthemum morifolium Augments Pentobarbital-Induced Sleep Behaviors: Involvement of Clâ Channel Activation
Dried Chrysanthemum morifolium flowers have traditionally been used in Korea for the treatment
of insomnia. This study was performed to investigate whether the ethanol extract of Chrysanthemum
morifolium flowers (EFC) enhances pentobarbital-induced sleep behaviors. EFC prolonged sleep time
induced by pentobarbital similar to muscimol, a GABAA receptors agonist. EFC also increased sleep
rate and sleep time when administrated with pentobarbital at a subhypnotic dosage. Both EFC and
pentobarbital increased chloride (Clâ) influx in primary cultured cerebellar granule cells. EFC
increased glutamic acid decarboxylase (GAD) expression levels, but had no effect on the expression
of α1-, ÎČ2-, and Îł2-subunits of the GABAA receptor in the hippocampus of a mouse brain. This is in
contrast to treatment with pentobarbital, which showed decreased α1-subunit expression and no
change in GAD expression. In conclusion, EFC augments pentobarbital-induced sleep behaviors;
these effects may result from Clâ channel activation
Designing coupled microcavity lasers for high-Q modes with unidirectional light emission
We design coupled optical microcavities and report directional light emission
from high- modes for a broad range of refractive indices. The system
consists of a circular cavity that provides a high- mode in form of a
whispering gallery mode, whereas an adjacent deformed microcavity plays the
role of a waveguide or collimator of the light transmitted from the circular
cavity. As a result of this very simple, yet robust, concept we obtain high-
modes with promising directional emission characteristics. No information about
phase space is required, and the proposed scheme can be easily realized in
experiments.Comment: 3 pages, 3 figure
Modeling the viscosity of silicate melts containing manganese oxide
Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnOâSiO2 and MnOâAl2O3âiO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limit
Enhanced Emission from WSe2 Monolayers Coupled to Circular Bragg Gratings
Two-dimensional transition-metal dichalcogenides (TMDC) are of great interest
for on-chip nanophotonics due to their unique optoelectronic properties. Here,
we propose and realize coupling of tungsten diselenide (WSe2) monolayers to
circular Bragg grating structures to achieve enhanced emission. The interaction
between WSe2 and the resonant mode of the structure results in Purcell-enhanced
emission, while the symmetric geometrical structure improves the directionality
of the out-coupling stream of emitted photons. Furthermore, this hybrid
structure produces a record high contrast of the spin valley readout (> 40%)
revealed by the polarization resolved photoluminescence (PL) measurements. Our
results are promising for on-chip integration of TMDC monolayers with optical
resonators for nanophotonic circuits
Association of Irritability and Anxiety With the Neural Mechanisms of Implicit Face Emotion Processing in Youths With Psychopathology
Importance: Psychiatric comorbidity complicates clinical care and confounds efforts to elucidate the pathophysiology of commonly occurring symptoms in youths. To our knowledge, few studies have simultaneously assessed the effect of 2 continuously distributed traits on brain-behavior relationships in children with psychopathology.
Objective: To determine shared and unique effects of 2 major dimensions of child psychopathology, irritability and anxiety, on neural responses to facial emotions during functional magnetic resonance imaging.
Design, Setting, and Participants: Cross-sectional functional magnetic resonance imaging study in a large, well-characterized clinical sample at a research clinic at the National Institute of Mental Health. The referred sample included youths ages 8 to 17 years, 93 youths with anxiety, disruptive mood dysregulation, and/or attention-deficit/hyperactivity disorders and 22 healthy youths.
Main Outcomes and Measures: The child's irritability and anxiety were rated by both parent and child on the Affective Reactivity Index and Screen for Child Anxiety Related Disorders, respectively. Using functional magnetic resonance imaging, neural response was measured across the brain during gender labeling of varying intensities of angry, happy, or fearful face emotions. In mixed-effects analyses, the shared and unique effects of irritability and anxiety were tested on amygdala functional connectivity and activation to face emotions.
Results: The mean (SD) age of participants was 13.2 (2.6) years; of the 115 included, 64 were male. Irritability and/or anxiety influenced amygdala connectivity to the prefrontal and temporal cortex. Specifically, irritability and anxiety jointly influenced left amygdala to left medial prefrontal cortex connectivity during face emotion viewing (F4,888â=â9.20; Pâ<â.001 for mixed model term). During viewing of intensely angry faces, decreased connectivity was associated with high levels of both anxiety and irritability, whereas increased connectivity was associated with high levels of anxiety but low levels of irritability (Wald Ï21â=â21.3; Pâ<â.001 for contrast). Irritability was associated with differences in neural response to face emotions in several areas (F2, 888ââ„â13.45; all P < .001). This primarily occurred in the ventral visual areas, with a positive association to angry and happy faces relative to fearful faces.
Conclusions and Relevance: These data extend prior work conducted in youths with irritability or anxiety alone and suggest that research may miss important findings if the pathophysiology of irritability and anxiety are studied in isolation. Decreased amygdala-medial prefrontal cortex connectivity may mediate emotion dysregulation when very anxious and irritable youth process threat-related faces. Activation in the ventral visual circuitry suggests a mechanism through which signals of social approach (ie, happy and angry expressions) may capture attention in irritable youth
Visual tracking of non-rigid objects with partial occlusion through elastic structure of local patches and hierarchical diffusion
In this paper, a tracking method based on sequential Bayesian inference is proposed. The proposed method focuses on solving both the problem of tracking under partial occlusions and the problem of non-rigid object tracking in real-time on a desktop personal computer (PC). The proposed method is mainly composed of two parts: (1) modeling the target object using elastic structure of local patches for robust performance; and (2) efficient hierarchical diffusion method to perform the tracking procedure in real-time. The elastic structure of local patches allows the proposed method to handle partial occlusions and non-rigid deformations through the relationship among neighboring patches. The proposed hierarchical diffusion method generates samples from the region where the posterior is concentrated to reduce computation time. The method is extensively tested on a number of challenging image sequences with occlusion and non-rigid deformation. The experimental results show the real-time capability and the robustness of the proposed method under various situations
- âŠ