5,800 research outputs found

    Modeling Viscosity of Molten Slags and Glasses

    Get PDF
    RĂ©cemment, un nouveau modĂšle de viscositĂ© a Ă©tĂ© dĂ©veloppĂ© dans ce laboratoire pour des laitiers liquides monophasiques relatifs au systĂšme CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3[27, 81, 82]. Dans ce modĂšle, la viscositĂ© est liĂ©e Ă  la structure du laitier, caractĂ©risĂ©e par les concentrations et la connectivitĂ© des espĂšces Qi. La structure est calculĂ©e Ă  son tour Ă  partir de la description thermodynamique du liquide Ă  l’aide du ModĂšle Quasichimique ModifiĂ©[231, 232] et de la banque de donnĂ©es thermodynamiques de FactSage[14]. Le modĂšle dĂ©veloppĂ© prend en compte, en utilisant la connectivitĂ© des espĂšces Qi, la formation d’un rĂ©seau de silice ou d’oxyde de bore qui a un effet marquĂ© sur la viscositĂ©. Un modĂšle de viscositĂ© a Ă©tĂ© dĂ©veloppĂ© pour les systĂšmes MOx, MOx-SiO2, MOx-B2O3 et B2O3-SiO2 (MOx = oxyde basique), et quelques paramĂštres unaires et binaires avec une dĂ©pendance en tempĂ©rature d’Arrhenius ont Ă©tĂ© obtenus simultanĂ©ment Ă  partir des donnĂ©es de viscositĂ© disponibles pour tous les liquides binaires et ternaires. Le modĂšle comprend deux paramĂštres ternaires supplĂ©mentaires pour chaque systĂšme ternaire MOx–Al2O3–SiO2 Ă  base de Al2O3 pour lequel a lieu un Effet de Compensation de Charge (oĂč Al3+ occupe une coordination tĂ©traĂ©drique et s’insĂšre dans le rĂ©seau de silice avec un cation basique M restant au voisinage de Al3+ pour compenser la charge manquante). La viscositĂ© de laitiers multicomposants CaO-MgOK2O- Na2O-Al2O3-SiO2-B2O3 [27, 81, 82] a ensuite Ă©tĂ© prĂ©dite par le modĂšle sans l’ajout de paramĂštres ajustables supplĂ©mentaires, et elle est en bon accord avec les mesures disponibles en deçà des barres d’erreur expĂ©rimentales. Cependant, le modĂšle ne pouvait pas reproduire le comportement complexe des donnĂ©es de viscositĂ© mesurĂ©es dans la rĂ©gion riche en oxyde alcalin des liquides MO0.5-SiO2, ou pour des liquides multicomposants Ă  base d’oxydes alcalins. Dans le prĂ©sent travail, le modĂšle est modifiĂ© pour reproduire le comportement complexe de la viscositĂ© des systĂšmes oxyde alcalin-silice du cĂŽtĂ© riche en oxyde alcalin. Ce comportement est attribuĂ© aux agrĂ©gats en forme d’anneaux formĂ©s par les espĂšces Q2 et Q3. L’ajout d’un paramĂštre binaire supplĂ©mentaire MOx -Si ERing pour chaque systĂšme oxyde alcalin-silice permet de prendre en compte la contribution en excĂšs Ă  la viscositĂ© due Ă  la polymĂ©risation des espĂšces Q2 et Q3 sous la forme d’anneaux de grande taille. vi Aussi, dans le prĂ©sent travail, la viscositĂ© de laitiers liquides contenant PbO, ZnO, MnO et TiOx a Ă©tĂ© rĂ©visĂ©e et modĂ©lisĂ©e Ă  l’aide du modĂšle modifiĂ©. Seulement 6 paramĂštres du modĂšle liĂ©s Ă  chaque oxyde MOx (M = Pb, Zn, Mn) sont requis pour reproduire la viscositĂ© de liquides Ă  base de silice. Deux paramĂštres ( MOx A et MOx E ) dĂ©crivent la viscositĂ© du liquide pur MOx; deux paramĂštres binaires ( 1,1 MO -Si MO -Si et x x E ER ) dĂ©crivent la viscositĂ© de chaque liquide MOx - SiO2; et finalement deux paramĂštres supplĂ©mentaires reprĂ©sentent l’énergie de Gibbs MAl2O4 ΔG de formation des “espĂšces” Al de coordination tĂ©traĂ©drique entrant dans le rĂ©seau de silice avec une compensation de charge due au cation M. Ces deux paramĂštres supplĂ©mentaires sont obtenus Ă  partir des viscositĂ©s expĂ©rimentales des liquides MOx-Al2O3-SiO2. La viscositĂ© de laitiers multicomposants contenant MOx est ensuite prĂ©dite par le modĂšle sans l’ajout de paramĂštres ajustables supplĂ©mentaires. Les liquides Ă  base de silice contenant TiOx ont requis quatre paramĂštres ( TiO2 A , TiO1.5 A , TiO2 E et TiO1.5 E ) dĂ©crivant la viscositĂ© des liquides purs TiO2 et TiO1.5, et quatre paramĂštres binaires ( 2 1,1 TiO -Si E , TiO2 -Si E R , 1.5 1,1 TiO -Si E et TiO1.5 -Si E R ) dĂ©crivant la viscositĂ© des liquides TiO2-SiO2 et TiO1.5-SiO2. Aucune donnĂ©e de viscositĂ© n’était disponible pour rendre compte de l’Effet de Compensation de Charge entre TiOx, Al2O3 et MOx (TiO2-Al2O3 et Ti2O3-MOx), oĂč MOx est un oxyde basique, et ainsi aucun paramĂštre du modĂšle n’a Ă©tĂ© ajoutĂ© pour cet Effet de Compensation de Charge. La viscositĂ© de laitiers multicomposants contenant TiO2 et Ti2O3 est ensuite prĂ©dite par le modĂšle sans l’ajout de paramĂštres ajustables supplĂ©mentaires. En guise de test du modĂšle, les donnĂ©es de viscositĂ© expĂ©rimentales disponibles pour tous les sous-systĂšmes du systĂšme SiO2–Al2O3–CaO–MgO–Na2O–K2O–PbO–ZnO–MnO–TiOx ont Ă©tĂ© rassemblĂ©es et utilisĂ©es pour calibrer le modĂšle. L’écart entre les mesures et les viscositĂ©s prĂ©dites par le modĂšle n’excĂšde pas la dispersion des points expĂ©rimentaux des diffĂ©rents auteurs. En particulier, le modĂšle prĂ©dit la viscositĂ© de laitiers multicomposants Ă  base de silice et de verres commerciaux avec une prĂ©cision comparable Ă  celle des Ă©quations de rĂ©gression obtenues Ă  partir des donnĂ©es expĂ©rimentales sur les gammes de composition restreintes de ces liquides. Le modĂšle est aussi Ă©tendu dans le prĂ©sent travail pour dĂ©crire et prĂ©dire la viscositĂ© de liquides oxy-fluorĂ©s contenant MFx (M = Ca, Mg, Na, K et Al). Une banque de donnĂ©es de vii solution simplifiĂ©e utilisant un modĂšle polynĂŽmial avec les Ă©nergies de Gibbs de chaque liquide pur d’oxyde et de fluorure a Ă©tĂ© dĂ©veloppĂ©e, permettant ainsi de calculer approximativement la composition globale â€œĂ©quilibrĂ©e” Ă  partir d’une composition initiale donnĂ©e des liquides oxyfluorĂ©s. Les rĂŽles structuraux de MFx (M = Ca, Mg, Na, K et Al) sont examinĂ©s, et MFx est considĂ©rĂ© comme un modificateur de rĂ©seau dans les liquides Ă  base de silice ou d’oxyde de bore, avec des effets de rupture du rĂ©seau de silice ou d’oxyde de bore que nous avons simplement supposĂ©s identiques Ă  ceux des oxydes basiques contenant le mĂȘme cation M. Un modĂšle de viscositĂ© a Ă©tĂ© dĂ©veloppĂ© pour les systĂšmes MFx, MFx-SiO2 et MFx-B2O3 (M = Ca, Mg, Na, K et Al), et quelques paramĂštres unaires et binaires ont Ă©tĂ© obtenus simultanĂ©ment Ă  partir des donnĂ©es de viscositĂ© disponibles pour tous les liquides binaires et ternaires. Aucun effet de compensation de charge n’a Ă©tĂ© observĂ© entre MFx et Al2O3, et ainsi le modĂšle reproduit les donnĂ©es expĂ©rimentales pour les liquides binaires et ternaires sans appliquer d’effet de compensation de charge entre MFx et Al2O3. En plus des deux paramĂštres du modĂšle requis pour chaque liquide MFx-B2O3 (oĂč MFx est un fluorure basique), les paramĂštres additionnels m(MB4FO6) ΔG , m(MB4FO6) E et m sont nĂ©cessaires lorsque MFx est un fluorure alcalin de façon Ă  rendre compte de la formation d’agrĂ©gats au voisinage de la composition du tĂ©traborate. Ces paramĂštres supplĂ©mentaires reprĂ©sentent la taille et l’énergie de Gibbs de formation des agrĂ©gats ainsi que leur contribution Ă  l’énergie d’activation d’écoulement visqueux. Les donnĂ©es de viscositĂ© disponibles pour tous les sous-systĂšmes du systĂšme MFx–SiO2–B2O3–Al2O3–CaO– MgO–Na2O–K2O–PbO–MnO–TiOy (M = Ca, Mg, Na, K et Al) sont examinĂ©es. La viscositĂ© de liquides multicomposants et de liquides ternaires MFx–NOy–SiO2 (oĂč MFx et NOy sont des fluorures et des oxydes basiques) est prĂ©dite par le modĂšle uniquement Ă  partir des paramĂštres unaires, binaires et ternaires. L’écart entre les mesures et les viscositĂ©s prĂ©dites n’excĂšde pas la dispersion des points expĂ©rimentaux et les barres d’erreur expĂ©rimentales. La capacitĂ© de prĂ©diction du modĂšle a Ă©galement Ă©tĂ© testĂ©e sur plusieurs liquides de flux de moule industriels, et nous pensons qu’elle est satisfaisante compte tenu des incertitudes expĂ©rimentales des donnĂ©es de viscositĂ©. Le modĂšle dĂ©veloppĂ© avec une dĂ©pendance en tempĂ©rature d’Arrhenius pour la viscositĂ© des liquides oxy-fluorĂ©s est Ă©tendu dans le prĂ©sent travail pour prendre en compte la dĂ©pendance en tempĂ©rature non-Arrhenienne des donnĂ©es de viscositĂ© mesurĂ©es de la rĂ©gion vitreuse jusqu’à viii la rĂ©gion liquide. A l’aide de toutes les donnĂ©es disponibles pour les sous-systĂšmes du systĂšme CaO-MgO-Na2O-K2O-ZnO-PbO-Al2O3-B2O3-SiO2, les valeurs des paramĂštres du modĂšle unaires et binaires MOx A , MOx E , MOx Si ER − et x . MO -Si Ei j ont Ă©tĂ© rĂ©optimisĂ©es simultanĂ©ment avec l’ajout des paramĂštres unaires et binaires non-Arrheniens MOx T , MOx n , MOx -Si m , MOx -Si T et MOx -Si n (M = Ca, Mg, Pb, Zn et Al). De façon Ă  prendre en compte l’Effet de Compensation de Charge pour les verres contenant Al2O3, nous avons ajoutĂ© deux paramĂštres supplĂ©mentaires dans la fonction MAlxOy ΔG correspondant Ă  la formation d’une espĂšce Ă  Charge CompensĂ©e telle que 2 4 CaAl O ou 2 NaAlO . Cette modification simple du modĂšle correspond Ă  un bon accord (en deçà des barres d’erreur expĂ©rimentales) avec la plupart des donnĂ©es de viscositĂ© pour les systĂšmes ternaires et d’ordre supĂ©rieur contenant Al2O3. A partir des donnĂ©es de viscositĂ© et des Ă©tudes micrographiques disponibles pour les verres binaires MOx-B2O3, il semble que la formation d’agrĂ©gats mĂ©tastables d’apparence solide soit favorable dans ces verres binaires (MOx = oxyde basique). Pour modĂ©liser la formation de ces agrĂ©gats d’apparence solide dans la rĂ©gion vitreuse, nous avons employĂ© des paramĂštres pour les Ă©nergies de Gibbs m(MBxOy) ΔG de formation des agrĂ©gats et pour l’effet de taille des agrĂ©gats. Au total, cinq paramĂštres binaires sont utilisĂ©s pour reproduire les donnĂ©es de viscositĂ© dans chaque systĂšme binaire oxyde basique-oxyde de bore : ( ) * B MOx A , ( ) * B MOx E , m , m(MBxOy) ΔG et m(MBxOy) E . La taille moyenne m d’un agrĂ©gat a Ă©tĂ© optimisĂ©e diffĂ©remment suivant le verre binaire MOx-B2O3. Aussi, les agrĂ©gats d’apparence solide sont modĂ©lisĂ©s Ă  partir des donnĂ©es de viscositĂ© pour les verres binaires MOx-B2O3. Seuls les paramĂštres du modĂšle B A , B E , B T et B n pour B2O3 pur, et AlO1.5 -B T et AlO1.5 -B n pour le systĂšme binaire Al2O3-B2O3 ont Ă©tĂ© appliquĂ©s au modĂšle Ă©tendu pour reproduire le comportement en viscositĂ© non-Arrhenien des systĂšmes contenant B2O3. Les donnĂ©es de viscositĂ© disponibles pour les sous-systĂšmes du systĂšme B2O3-CaO-MgONa2O- K2O-ZnO-PbO-Al2O3-SiO2 ont Ă©tĂ© examinĂ©es. Nous dĂ©montrons que le modĂšle Ă©tendu reproduit bien le comportement complexe des donnĂ©es expĂ©rimentales pour les systĂšmes binaires et ternaires de la rĂ©gion vitreuse jusqu’à la rĂ©gion liquide, et prĂ©dit la viscositĂ© de verres ix multicomposants en deçà des barres d’erreur expĂ©rimentales. En particulier, le modĂšle Ă©tendu peut ĂȘtre utilisĂ© pour obtenir de bonnes estimations de la viscositĂ© de verres multicomposants, de magmas, de laves et de verres commerciaux. Nous pensons que ce modĂšle Ă©tendu reproduit en deçà des barres d’erreur expĂ©rimentales non seulement la dĂ©pendance en tempĂ©rature mais aussi la dĂ©pendance en composition des donnĂ©es de viscositĂ© disponibles, de la rĂ©gion vitreuse jusqu’à la rĂ©gion liquide. Le modĂšle Ă©tendu s’applique sur la gamme de tempĂ©rature complĂšte allant de la rĂ©gion vitreuse jusqu’à la rĂ©gion liquide. Pour la rĂ©gion liquide, le modĂšle non Ă©tendu est lĂ©gĂšrement supĂ©rieur au modĂšle Ă©tendu. En rĂ©sumĂ©, le modĂšle de viscositĂ© reproduit maintenant toutes les donnĂ©es de viscositĂ© disponibles pour les liquides et les verres relatifs au systĂšme MFx–SiO2– B2O3–Al2O3–CaO–MgO–Na2O–K2O–PbO–ZnO–MnO–TiOy (M = Ca, Mg, Na, K et Al) en deçà des barres d’erreur expĂ©rimentales, Ă  toute composition et sur la gamme de tempĂ©rature allant de 300oC Ă  2000oC. ---------- Recently, a new viscosity model was developed in this laboratory to reproduce the viscosity of single-phase oxide melts for the system CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3[27, 81, 82]. In this model, the viscosity is related to the structure of the melt characterized by the amounts and connectivity of Qi-species. The structure in turn is calculated from the thermodynamic description of the melt using the Modified Quasichemical Model[231, 232] and the FactSage thermodynamic database[14]. Most importantly, the model takes into account the formation of a silicate or borate network which has a profound effect on the viscosity using the connectivity of Qi-species. The viscosity model for the systems MOx, MOx-SiO2, MOx-B2O3 and B2O3-SiO2 (M = Basic oxides) was developed, and a few unary and binary parameters with Arrhenian temperature dependence were simultaneously obtained from assessments of the viscosity data of all available binary and ternary melts. For each Al2O3-containing ternary system MOx–Al2O3–SiO2 exhibiting the Charge Compensation Effect (where Al3+ assumes a tetrahedral coordination and enters the silica network with a basic cation M staying close to Al3+ to compensate the missing charge) the model incorporates two additional ternary parameters. The viscosity of multi-component melts CaO-MgO-K2O-Na2O-Al2O3-SiO2-B2O3 [27, 81, 82] was then predicted by the model without any additional adjustable model parameters and is in good agreement with available measurements within experimental error limits. However, the model could not reproduce the complex behavior of the viscosity data measured in the alkali-rich side of MO0.5-SiO2 melts and multi-component melts containing alkali oxides. In the present work, the model is modified to reproduce the complex behavior of the viscosity on the alkali-rich side of the alkali-silica systems. This behavior is attributed to ring clusters formed by Q2- and Q3-species. An excess contribution to the viscosity due to polymerization of Q2- and Q3-species into large rings is taken into account by the introduction of one additional binary parameter MOx -Si ERing for each alkali-silica system. Also in the present work, with the modified model, the viscosity of molten slags containing PbO, ZnO, MnO and TiOx have been reviewed and modeled. In order to reproduce the xi viscosity of the silicate melts, only 6 model parameters related to each oxide MOx (M = Pb, Zn, Mn) are required. Two parameters, MOx A and MOx E , describe the viscosity of pure liquid MOx; two binary parameters, 1,1 MO -Si MO -Si and x x E ER , describe the viscosity of each MOx -SiO2 melt; and, finally, two more parameters represent the Gibbs energy, MAl2O4 ΔG , of formation of tetrahedrallycoordinated Al “species” which enter the silica network and are charge-compensated by M. The latter two parameters are obtained from the experimental viscosities of MOx-Al2O3-SiO2 melts. The viscosity of multicomponent melts containing MOx is then predicted by the model without any additional adjustable model parameters. Silicate melts containing TiOx required four parameters, TiO2 A , TiO1.5 A , TiO2 E and TiO1.5 E which describe the viscosity of pure liquid TiO2 and TiO1.5; and four binary parameters, 2 1,1 TiO -Si E , TiO2 -Si ER , 1.5 1,1 TiO -Si E and TiO1.5 -Si ER which describe the viscosity of TiO2-SiO2 and TiO1.5-SiO2 melts. No viscosity data were available to account for the Charge Compensation Effect among TiOx, Al2O3 and MOx (TiO2-Al2O3 and Ti2O3-MOx), where M is a basic oxide, and thus no model parameters were applied for the Charge Compensation Effect. The viscosity of multicomponent melts containing TiO2 and Ti2O3 is then predicted by the model without any additional adjustable model parameters. To test the model, available experimental viscosity data of all sub-systems of the SiO2– Al2O3–CaO–MgO–Na2O–K2O–PbO–ZnO–MnO–TiOx system were collected and used to calibrate the model. The deviation of the available experimental data from the viscosities predicted by the model does not exceed the scatter of experimental points among different authors. In particular, the model predicts the viscosity of multicomponent silicate melts and commercial glass melts with an accuracy similar to the accuracy of the regression equations which were fitted to the experimental data over the narrow composition ranges of these melts. The model is also extended in the present work to describe and predict the viscosities of oxy-fluoride melts containing MFx (M = Ca, Mg, Na, K and Al). A simple solution database using a polynomial solution model with Gibbs energies of each pure liquid oxide and fluoride was developed to roughly calculate the overall “equilibrated composition” from given initial compositions of oxy-fluoride melts. Structural roles of MFx (M = Ca, Mg, Na, K and Al) are xii reviewed and regarded as network modifiers in silicate or borate melts and simply approximated to have the same breaking effects on silicate or borate networks as basic oxides containing the same cations. The viscosity model for the system MFx, MFx-SiO2 and MFx-B2O3 (M = Ca, Mg, Na, K and Al) was developed and a few unary and binary parameters were simultaneously obtained from viscosity data of all available binary and ternary melts. No charge compensation effect between MFx and Al2O3 was observed, and thus the model reproduces the experimental data for binary and ternary melts without any applying charge compensation effect between MFx and Al2O3. In addition to the two model parameters that are required for each MFx-B2O3 melt, where MFx is a basic fluoride, the further parameters m(MB4FO6) ΔG , m(MB4FO6) E and m are needed when MFx is an alkali fluoride to account for the formation of clusters near the tetraborate composition. The additional parameters represent the size and Gibbs energy of formation of these clusters and their contribution to the activation energy of the viscous flow. The available viscosity data for all subsystems of MFx–SiO2–B2O3–Al2O3–CaO–MgO–Na2O–K2O–PbO–MnO–TiOy melts (M = Ca, Mg, Na, K and Al) are reviewed. The viscosity of multicomponent melts and of ternary melts MFx–NOy–SiO2, where MFx and NOy are basic fluorides and oxides, is predicted by the model solely from the unary, binary and ternary parameters. The deviation from the available experimental data does not exceed the scatter of the experimental measurements and experimental error limits. The predictive ability of the model has been further tested on several industrial mold flux melts and is believed to be in good agreement with the viscosity data within experimental error limits. The developed model with Arrhenian temperature dependence for the viscosity of oxyfluoride melts is further extended in the present work to take into account non-Arrhenian temperature dependence of the viscosity data measured from the glass to the melt regions. Using data for all available sub-systems of the CaO-MgO-Na2O-K2O-ZnO-PbO-Al2O3-B2O3-SiO2 system, the values of unary and binary model parameters MOx A , MOx E , MOx Si ER − and x . MO -Si Ei j were re-optimized simultaneously with the addition of the non-Arrhenian unary and binary parameters MOx T , MOx n , MOx -Si m , MOx -Si T and MOx -Si n (M = Ca, Mg, Pb, Zn and Al). In order to take into account the Charge Compensation Effect for glasses containing Al2O3, two more parameters were xiii added to the function of MAl xOy ΔG for the formation of Charge Compensated species such as 2 4 CaAl O or 2 NaAlO . This simple modification of the model results in a good agreement with most of the viscosity data of ternary and high-order systems containing Al2O3 within experimental error limits. From available viscosity data and micrographic studies for binary MOx-B2O3 glasses, metastable solid-like clusters seem to form favorably in the binary MOx-B2O3 glasses (M = Basic Oxides). In order to model the formation of these solid-like clusters in the glass region, we employed parameters for the Gibbs energies m(MBxOy) ΔG of formation of clusters and for the size effect of clusters. A total of five binary parameters are used to reproduce the viscosity data in each basic oxide-boron oxide binary system: ( ) * B MOx A , ( ) * B MOx E , m , m(MBxOy) ΔG and m(MBxOy) E . The average size of the cluster, m , was optimized differently according to the binary MOx-B2O3 glass. Also, the solid-like clusters are modeled according to the viscosity data of the binary MOx-B2O3 glasses. Only the model parameters B A , B E , B T and B n for pure B2O3 ,and AlO1.5 -B T and AlO1.5 -B n for the binary Al2O3-B2O3 system were applied to the extended model to reproduce the non-Arrhenian viscosity behavior of the systems containing B2O3. The available viscosity data for the sub-systems of the B2O3-CaO-MgO-Na2O-K2O-ZnOPbO- Al2O3-SiO2 system have been reviewed. It is demonstrated that the extended model reproduces well the complex behavior of the experimental data for the binary and ternary systems from the glass region to the melt region and predicts the viscosities of multi-component glasses within experimental error limits. In particular, the extended model can be used to provide good estimates of the viscosities of multicomponent glasses, magmas, lavas and commercial glasses. Most importantly, the extended model is believed to reproduce not only the temperature dependence but also composition dependence of available viscosity data within experimental error limits from the glass to the melt region. The extended model applies over the entire temperature range from the glass region to the melt region. For the melt region, the unextended model is slightly superior to the extended model. xiv In summary, the viscosity model now reproduces all available viscosity data for melts and glasses for the system MFx–SiO2–B2O3–Al2O3–CaO–MgO–Na2O–K2O–PbO–ZnO–MnO–TiOy (M = Ca, Mg, Na, K and Al) within experimental error limits at all compositions and over the temperature range from 300 to 2000ÂșC

    Ethanol Extract of the Flower Chrysanthemum morifolium Augments Pentobarbital-Induced Sleep Behaviors: Involvement of Cl− Channel Activation

    Get PDF
    Dried Chrysanthemum morifolium flowers have traditionally been used in Korea for the treatment of insomnia. This study was performed to investigate whether the ethanol extract of Chrysanthemum morifolium flowers (EFC) enhances pentobarbital-induced sleep behaviors. EFC prolonged sleep time induced by pentobarbital similar to muscimol, a GABAA receptors agonist. EFC also increased sleep rate and sleep time when administrated with pentobarbital at a subhypnotic dosage. Both EFC and pentobarbital increased chloride (Cl−) influx in primary cultured cerebellar granule cells. EFC increased glutamic acid decarboxylase (GAD) expression levels, but had no effect on the expression of α1-, ÎČ2-, and Îł2-subunits of the GABAA receptor in the hippocampus of a mouse brain. This is in contrast to treatment with pentobarbital, which showed decreased α1-subunit expression and no change in GAD expression. In conclusion, EFC augments pentobarbital-induced sleep behaviors; these effects may result from Cl− channel activation

    Designing coupled microcavity lasers for high-Q modes with unidirectional light emission

    Full text link
    We design coupled optical microcavities and report directional light emission from high-QQ modes for a broad range of refractive indices. The system consists of a circular cavity that provides a high-QQ mode in form of a whispering gallery mode, whereas an adjacent deformed microcavity plays the role of a waveguide or collimator of the light transmitted from the circular cavity. As a result of this very simple, yet robust, concept we obtain high-QQ modes with promising directional emission characteristics. No information about phase space is required, and the proposed scheme can be easily realized in experiments.Comment: 3 pages, 3 figure

    Modeling the viscosity of silicate melts containing manganese oxide

    Get PDF
    Our recently developed model for the viscosity of silicate melts is applied to describe and predict the viscosities of oxide melts containing manganese oxide. The model requires three pairs of adjustable parameters that describe the viscosities in three systems: pure MnO, MnO–SiO2 and MnO–Al2O3–iO2. The viscosity of other ternary and multicomponent silicate melts containing MnO is then predicted by the model without any additional adjustable model parameters. Experimental viscosity data are reviewed for melts formed by MnO with SiO2, Al2O3, CaO, MgO, PbO, Na2O and K2O. The deviation of the available experimental data from the viscosities predicted by the model is shown to be within experimental error limit

    Enhanced Emission from WSe2 Monolayers Coupled to Circular Bragg Gratings

    Full text link
    Two-dimensional transition-metal dichalcogenides (TMDC) are of great interest for on-chip nanophotonics due to their unique optoelectronic properties. Here, we propose and realize coupling of tungsten diselenide (WSe2) monolayers to circular Bragg grating structures to achieve enhanced emission. The interaction between WSe2 and the resonant mode of the structure results in Purcell-enhanced emission, while the symmetric geometrical structure improves the directionality of the out-coupling stream of emitted photons. Furthermore, this hybrid structure produces a record high contrast of the spin valley readout (> 40%) revealed by the polarization resolved photoluminescence (PL) measurements. Our results are promising for on-chip integration of TMDC monolayers with optical resonators for nanophotonic circuits

    Association of Irritability and Anxiety With the Neural Mechanisms of Implicit Face Emotion Processing in Youths With Psychopathology

    Get PDF
    Importance: Psychiatric comorbidity complicates clinical care and confounds efforts to elucidate the pathophysiology of commonly occurring symptoms in youths. To our knowledge, few studies have simultaneously assessed the effect of 2 continuously distributed traits on brain-behavior relationships in children with psychopathology. Objective: To determine shared and unique effects of 2 major dimensions of child psychopathology, irritability and anxiety, on neural responses to facial emotions during functional magnetic resonance imaging. Design, Setting, and Participants: Cross-sectional functional magnetic resonance imaging study in a large, well-characterized clinical sample at a research clinic at the National Institute of Mental Health. The referred sample included youths ages 8 to 17 years, 93 youths with anxiety, disruptive mood dysregulation, and/or attention-deficit/hyperactivity disorders and 22 healthy youths. Main Outcomes and Measures: The child's irritability and anxiety were rated by both parent and child on the Affective Reactivity Index and Screen for Child Anxiety Related Disorders, respectively. Using functional magnetic resonance imaging, neural response was measured across the brain during gender labeling of varying intensities of angry, happy, or fearful face emotions. In mixed-effects analyses, the shared and unique effects of irritability and anxiety were tested on amygdala functional connectivity and activation to face emotions. Results: The mean (SD) age of participants was 13.2 (2.6) years; of the 115 included, 64 were male. Irritability and/or anxiety influenced amygdala connectivity to the prefrontal and temporal cortex. Specifically, irritability and anxiety jointly influenced left amygdala to left medial prefrontal cortex connectivity during face emotion viewing (F4,888 = 9.20; P < .001 for mixed model term). During viewing of intensely angry faces, decreased connectivity was associated with high levels of both anxiety and irritability, whereas increased connectivity was associated with high levels of anxiety but low levels of irritability (Wald χ21 = 21.3; P < .001 for contrast). Irritability was associated with differences in neural response to face emotions in several areas (F2, 888 ≄ 13.45; all P < .001). This primarily occurred in the ventral visual areas, with a positive association to angry and happy faces relative to fearful faces. Conclusions and Relevance: These data extend prior work conducted in youths with irritability or anxiety alone and suggest that research may miss important findings if the pathophysiology of irritability and anxiety are studied in isolation. Decreased amygdala-medial prefrontal cortex connectivity may mediate emotion dysregulation when very anxious and irritable youth process threat-related faces. Activation in the ventral visual circuitry suggests a mechanism through which signals of social approach (ie, happy and angry expressions) may capture attention in irritable youth

    Visual tracking of non-rigid objects with partial occlusion through elastic structure of local patches and hierarchical diffusion

    Get PDF
    In this paper, a tracking method based on sequential Bayesian inference is proposed. The proposed method focuses on solving both the problem of tracking under partial occlusions and the problem of non-rigid object tracking in real-time on a desktop personal computer (PC). The proposed method is mainly composed of two parts: (1) modeling the target object using elastic structure of local patches for robust performance; and (2) efficient hierarchical diffusion method to perform the tracking procedure in real-time. The elastic structure of local patches allows the proposed method to handle partial occlusions and non-rigid deformations through the relationship among neighboring patches. The proposed hierarchical diffusion method generates samples from the region where the posterior is concentrated to reduce computation time. The method is extensively tested on a number of challenging image sequences with occlusion and non-rigid deformation. The experimental results show the real-time capability and the robustness of the proposed method under various situations
    • 

    corecore