8,202 research outputs found

    Genetics of Aging in Caenorhabditis elegans

    Get PDF
    A dissection of longevity in Caenorhabditis elegans reveals that animal life span is influenced by genes, environment, and stochastic factors. From molecules to physiology, a remarkable degree of evolutionary conservation is seen

    Lifespan Regulation by Evolutionarily Conserved Genes Essential for Viability

    Get PDF
    Evolutionarily conserved mechanisms that control aging are predicted to have prereproductive functions in order to be subject to natural selection. Genes that are essential for growth and development are highly conserved in evolution, but their role in longevity has not previously been assessed. We screened 2,700 genes essential for Caenorhabditis elegans development and identified 64 genes that extend lifespan when inactivated postdevelopmentally. These candidate lifespan regulators are highly conserved from yeast to humans. Classification of the candidate lifespan regulators into functional groups identified the expected insulin and metabolic pathways but also revealed enrichment for translation, RNA, and chromatin factors. Many of these essential gene inactivations extend lifespan as much as the strongest known regulators of aging. Early gene inactivations of these essential genes caused growth arrest at larval stages, and some of these arrested animals live much longer than wild-type adults. daf-16 is required for the enhanced survival of arrested larvae, suggesting that the increased longevity is a physiological response to the essential gene inactivation. These results suggest that insulin-signaling pathways play a role in regulation of aging at any stage in life

    Roles of the developmental regulator unc-62/homothorax in limiting longevity in Caenorhabditis elegans

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution License.The normal aging process is associated with stereotyped changes in gene expression, but the regulators responsible for these age-dependent changes are poorly understood. Using a novel genomics approach, we identified HOX co-factor unc-62 (Homothorax) as a developmental regulator that binds proximal to age-regulated genes and modulates lifespan. Although unc-62 is expressed in diverse tissues, its functions in the intestine play a particularly important role in modulating lifespan, as intestine-specific knockdown of unc-62 by RNAi increases lifespan. An alternatively-spliced, tissue-specific isoform of unc-62 is expressed exclusively in the intestine and declines with age. Through analysis of the downstream consequences of unc-62 knockdown, we identify multiple effects linked to aging. First, unc-62 RNAi decreases the expression of yolk proteins (vitellogenins) that aggregate in the body cavity in old age. Second, unc-62 RNAi results in a broad increase in expression of intestinal genes that typically decrease expression with age, suggesting that unc-62 activity balances intestinal resource allocation between yolk protein expression and fertility on the one hand and somatic functions on the other. Finally, in old age, the intestine shows increased expression of several aberrant genes; these UNC-62 targets are expressed predominantly in neuronal cells in developing animals, but surprisingly show increased expression in the intestine of old animals. Intestinal expression of some of these genes during aging is detrimental for longevity; notably, increased expression of insulin ins-7 limits lifespan by repressing activity of insulin pathway response factor DAF-16/FOXO in aged animals. These results illustrate how unc-62 regulation of intestinal gene expression is responsible for limiting lifespan during the normal aging process.ELVN has been supported by the Stanford Genome Training Program and the Smith Fellowship (Stanford Graduate Fellowships program). Research in the laboratory of SKK is supported by the NHGRI, NIGMS, NIA, and the Glenn Foundation. Some strains were provided by the Caenorhabditis Genetics Center, which is funded by NIH Office of Research Infrastructure Programs (P40 OD010440).Peer Reviewe

    Signalling Pathways Involved in Adult Heart Formation Revealed by Gene Expression Profiling in Drosophila

    Get PDF
    Drosophila provides a powerful system for defining the complex genetic programs that drive organogenesis. Under control of the steroid hormone ecdysone, the adult heart in Drosophila forms during metamorphosis by a remodelling of the larval cardiac organ. Here, we evaluated the extent to which transcriptional signatures revealed by genomic approaches can provide new insights into the molecular pathways that underlie heart organogenesis. Whole-genome expression profiling at eight successive time-points covering adult heart formation revealed a highly dynamic temporal map of gene expression through 13 transcript clusters with distinct expression kinetics. A functional atlas of the transcriptome profile strikingly points to the genomic transcriptional response of the ecdysone cascade, and a sharp regulation of key components belonging to a few evolutionarily conserved signalling pathways. A reverse genetic analysis provided evidence that these specific signalling pathways are involved in discrete steps of adult heart formation. In particular, the Wnt signalling pathway is shown to participate in inflow tract and cardiomyocyte differentiation, while activation of the PDGF-VEGF pathway is required for cardiac valve formation. Thus, a detailed temporal map of gene expression can reveal signalling pathways responsible for specific developmental programs and provides here substantial grasp into heart formation

    Quark Mass Textures and sin 2 beta

    Full text link
    Recent precise measurements of sin 2 beta from the B-factories (BABAR and BELLE) and a better known strange quark mass from lattice QCD make precision tests of predictive texture models possible. The models tested include those hierarchical N-zero textures classified by Ramond, Roberts and Ross, as well as any other hierarchical matrix Ansatz with non-zero 12 = 21 and vanishing 11 and 13 elements. We calculate the maximally allowed value for sin 2 beta in these models and show that all the aforementioned models with vanishing 11 and 13 elements are ruled out at the 3 sigma level. While at present sin 2 beta and |Vub/Vcb| are equally good for testing N-zero texture models, in the near future the former will surpass the latter in constraining power.Comment: 1+20 pages, 2 figures, JHEP3 clas

    Life Span Extension by Calorie Restriction Depends on Rim15 and Transcription Factors Downstream of Ras/PKA, Tor, and Sch9

    Get PDF
    Calorie restriction (CR), the only non-genetic intervention known to slow aging and extend life span in organisms ranging from yeast to mice, has been linked to the down-regulation of Tor, Akt, and Ras signaling. In this study, we demonstrate that the serine/threonine kinase Rim15 is required for yeast chronological life span extension caused by deficiencies in Ras2, Tor1, and Sch9, and by calorie restriction. Deletion of stress resistance transcription factors Gis1 and Msn2/4, which are positively regulated by Rim15, also caused a major although not complete reversion of the effect of calorie restriction on life span. The deletion of both RAS2 and the Akt and S6 kinase homolog SCH9 in combination with calorie restriction caused a remarkable 10-fold life span extension, which, surprisingly, was only partially reversed by the lack of Rim15. These results indicate that the Ras/cAMP/PKA/Rim15/Msn2/4 and the Tor/Sch9/Rim15/Gis1 pathways are major mediators of the calorie restriction-dependent stress resistance and life span extension, although additional mediators are involved. Notably, the anti-aging effect caused by the inactivation of both pathways is much more potent than that caused by CR

    Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1

    Get PDF
    Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization

    In Vivo Validation of a Computationally Predicted Conserved Ath5 Target Gene Set

    Get PDF
    So far, the computational identification of transcription factor binding sites is hampered by the complexity of vertebrate genomes. Here we present an in silico procedure to predict target sites of a transcription factor in complex genomes using its binding site. In a first step sequence, comparison of closely related genomes identifies the binding sites in conserved cis-regulatory regions (phylogenetic footprinting). Subsequently, more remote genomes are introduced into the comparison to identify highly conserved and therefore putatively functional binding sites (phylogenetic filtering). When applied to the binding site of atonal homolog 5 (Ath5 or ATOH7), this procedure efficiently filters evolutionarily conserved binding sites out of more than 300,000 instances in a vertebrate genome. We validate a selection of the linked target genes by showing coexpression with and transcriptional regulation by Ath5. Finally, chromatin immunoprecipitation demonstrates the occupancy of the target gene promoters by Ath5. Thus, our procedure, applied to whole genomes, is a fast and predictive tool to in silico filter the target genes of a given transcription factor with defined binding site
    corecore