1,862 research outputs found

    The effect of vanadium-carbon monolayer on the adsorption of tungsten and carbon atoms on tungsten-carbide (0001) surface

    Get PDF
    We report a first-principles calculations to study the effect of a vanadium-carbon (VC) monolayer on the adsorption process of tungsten (W) and carbon (C) atoms onto tungsten-carbide (WC) (0001) surface. The essential configuration for the study is a supercell of hexagonal WC with a (0001) surface. When adding the VC monolayer, we employed the lowest energy configuration by examining various configurations. The total energy of the system is computed as a function of the W or C adatoms’ height from the surface. The adsorption of a W and C adatom on a clean WC (0001) surface is compared with that of a W and C adatom on a WC (0001) surface with VC monolayer. The calculations show that the adsorption energy increased for both W and C adatoms in presence of the VC monolayer. Our results provide a fundamental understanding that can explain the experimentally observed phenomena of inhibited grain growth during sintering of WC or WC-Co powders in presence of VC

    On the growth of the Bergman kernel near an infinite-type point

    Full text link
    We study diagonal estimates for the Bergman kernels of certain model domains in C2\mathbb{C}^2 near boundary points that are of infinite type. To do so, we need a mild structural condition on the defining functions of interest that facilitates optimal upper and lower bounds. This is a mild condition; unlike earlier studies of this sort, we are able to make estimates for non-convex pseudoconvex domains as well. This condition quantifies, in some sense, how flat a domain is at an infinite-type boundary point. In this scheme of quantification, the model domains considered below range -- roughly speaking -- from being ``mildly infinite-type'' to very flat at the infinite-type points.Comment: Significant revisions made; simpler estimates; very mild strengthening of the hypotheses on Theorem 1.2 to get much stronger conclusions than in ver.1. To appear in Math. An

    Ambiguity Aversion and Household Portfolio Choice Puzzles: Empirical Evidence

    Get PDF
    We test the relation between ambiguity aversion and five household portfolio choice puzzles: nonparticipation in equities, low allocations to equity, home-bias, own-company stock ownership, and portfolio under-diversification. In a representative US household survey, we measure ambiguity preferences using custom-designed questions based on Ellsberg urns. As theory predicts, ambiguity aversion is negatively associated with stock market participation, the fraction of financial assets in stocks, and foreign stock ownership, but it is positively related to own-company stock ownership. Conditional on stock ownership, ambiguity aversion is related to portfolio under-diversification, and during the financial crisis, ambiguity-averse respondents were more likely to sell stocks

    The Technology of The Manufacturing Thin Wire of TiNi-based Alloys by Using Infrared Radiation

    Get PDF
    The paper describes the technology of manufacturing a thin nickel-titanium wire through direct exposure to infrared radiation (IR). The effect of IR on the change in the structure of a thin wire made from the TiNi-based alloy was studied during its manufacturing. A comparative analysis of the Ti, Ni and O concentration in the TiNi wire was carried out. The analysis was performed for both a thin wire exposed to infrared radiation and that not exposed to infrared radiation. The wire samples were studied using a scanning electron microscope with the energy dispersive analysis. The infrared radiation effect on the structure of the wire is shown after thermal treatment in the local area of the material

    International Conference VIDEO-ANALYSIS: METHODOLOGY AND METHODS

    Get PDF
    We test the relation between ambiguity aversion and five household portfolio choice puzzles: nonparticipation in equities, low allocations to equity, home-bias, own-company stock ownership, and portfolio under-diversification. In a representative US household survey, we measure ambiguity preferences using custom-designed questions based on Ellsberg urns. As theory predicts, ambiguity aversion is negatively associated with stock market participation, the fraction of financial assets in stocks, and foreign stock ownership, but it is positively related to own-company stock ownership. Conditional on stock ownership, ambiguity aversion is related to portfolio under-diversification, and during the financial crisis, ambiguity-averse respondents were more likely to sell stocks

    Quantum critical point in the spin glass-antiferromagnetism competition for fermionic Ising Models

    Full text link
    The competition between spin glass (SGSG) and antiferromagnetic order (AFAF) is analyzed in two sublattice fermionic Ising models in the presence of a transverse Γ\Gamma and a parallel HH magnetic fields. The exchange interaction follows a Gaussian probability distribution with mean 4J0/N-4J_0/N and standard deviation J32/NJ\sqrt{32/N}, but only spins in different sublattices can interact. The problem is formulated in a path integral formalism, where the spin operators have been expressed as bilinear combinations of Grassmann fields. The results of two fermionic models are compared. In the first one, the diagonal SzS^z operator has four states, where two eigenvalues vanish (4S model), which are suppressed by a restriction in the two states 2S model. The replica symmetry ansatz and the static approximation have been used to obtain the free energy. The results are showing in phase diagrams T/JT/J (TT is the temperature) {\it versus} J0/JJ_{0}/J, Γ/J\Gamma/J, and H/JH/J. When Γ\Gamma is increased, TfT_{f} (transition temperature to a nonergodic phase) reduces and the Neel temperature decreases towards a quantum critical point. The field HH always destroys AFAF; however, within a certain range, it favors the frustration. Therefore, the presence of both fields, Γ\Gamma and HH, produces effects that are in competition. The critical temperatures are lower for the 4S model and it is less sensitive to the magnetic couplings than the 2S model.Comment: 15 pages, 6 figures, accepted in Physica

    Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model

    Get PDF
    It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R2*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel

    Decay rate and decoherence control in coupled dissipative cavities

    Full text link
    We give a detailed account of the derivation of a master equation for two coupled cavities in the presence of dissipation. The analytical solution is presented and physical limits of interest are discussed. Firstly we show that the decay rate of initial coherent states can be significantly modified if the two cavities have different decay rates and are weakly coupled through a wire. Moreover, we show that also decoherence rates can be substantially altered by manipulation of physical parameters. Conditions for experimental realizations are discussed.Comment: 19 pages, 1 table, accepted by Physica

    Highly stacked 3D organic integrated circuits with via-hole-less multilevel metal interconnects

    Get PDF
    Multilevel metal interconnects are crucial for the development of large-scale organic integrated circuits. In particular, three-dimensional integrated circuits require a large number of vertical interconnects between layers. Here, we present a novel multilevel metal interconnect scheme that involves solvent-free patterning of insulator layers to form an interconnecting area that ensures a reliable electrical connection between two metals in different layers. Using a highly reliable interconnect method, the highest stacked organic transistors to date, a three-dimensional organic integrated circuits consisting of 5 transistors and 20 metal layers, is successfully fabricated in a solvent-free manner. All transistors exhibit outstanding device characteristics, including a high on/off current ratio of similar to 10(7), no hysteresis behavior, and excellent device-to-device uniformity. We also demonstrate two vertically-stacked complementary inverter circuits that use transistors on 4 different floors. All circuits show superb inverter characteristics with a 100% output voltage swing and gain up to 35 V per V.11Ysciescopu
    corecore