185 research outputs found

    Calculations of the interactions of energetic ions with materials for protection of computer memory and biological systems

    Get PDF
    Theoretical calculations were performed for the propagation and interactions of particles having high atomic numbers and energy through diverse shield materials including polymeric materials and epoxy-bound lunar regolith by using transport codes for laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy upon interactions with shielding materials of specified elemental composition, density, and thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear reactions, which are treated in the solution of the transport problem used here. A reduced set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of 122 isotopes is necessary for the mass distribution. These isotopes are adequate for ion beams with charges equal to or less than 26. to predict the single event upset (SEU) rate in electronic devices, the resultant linear energy transfer (LET) spectra from the transport code behind various materials are coupled with a measured SEU cross section versus LET curve. The SEU rate on static random access memory (SRAM) is shown as a function of shield thickness for various materials. For a given mass the most effective shields for SEU reduction are materials with high hydrogen density, such as polyethylene. The shield effectiveness for protection of biological systems is examined by using conventional quality factors to calculate the dose equivalents and also by using the probability of the neoplastic transformation of shielded C3H10T1/2 mouse cells. The attenuation of biological effects within the shield and body tissues depends on the materials properties. The results predict that hydrogenous materials are good candidates for high-performance shields. Two biological models were used. Quantitative results depended upon model

    Space Radiation Cancer Risks and Uncertainities for Different Mission Time Periods

    Get PDF
    Space radiation consists of solar particle events (SPEs), comprised largely of medium energy protons (less than several hundred MeV); and galactic cosmic ray (GCR), which includes high energy protons and high charge and energy (HZE) nuclei. For long duration missions, space radiation presents significant health risks including cancer mortality. Probabilistic risk assessment (PRA) is essential for radiation protection of crews on long term space missions outside of the protection of the Earth s magnetic field and for optimization of mission planning and costs. For the assessment of organ dosimetric quantities and cancer risks, the particle spectra at each critical body organs must be characterized. In implementing a PRA approach, a statistical model of SPE fluence was developed, because the individual SPE occurrences themselves are random in nature while the frequency distribution of SPEs depends strongly upon the phase within the solar activity cycle. Spectral variability of SPEs was also examined, because the detailed energy spectra of protons are important especially at high energy levels for assessing the cancer risk associated with energetic particles for large events. An overall cumulative probability of a GCR environment for a specified mission period was estimated for the temporal characterization of the GCR environment represented by the deceleration potential (theta). Finally, this probabilistic approach to space radiation cancer risk was coupled with a model of the radiobiological factors and uncertainties in projecting cancer risks. Probabilities of fatal cancer risk and 95% confidence intervals will be reported for various periods of space missions

    Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks

    Get PDF
    We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection

    NASA Models of Space Radiation Induced Cancer, Circulatory Disease, and Central Nervous System Effects

    Get PDF
    The risks of late effects from galactic cosmic rays (GCR) and solar particle events (SPE) are potentially a limitation to long-term space travel. The late effects of highest concern have significant lethality including cancer, effects to the central nervous system (CNS), and circulatory diseases (CD). For cancer and CD the use of age and gender specific models with uncertainty assessments based on human epidemiology data for low LET radiation combined with relative biological effectiveness factors (RBEs) and dose- and dose-rate reduction effectiveness factors (DDREF) to extrapolate these results to space radiation exposures is considered the current "state-of-the-art". The revised NASA Space Risk Model (NSRM-2014) is based on recent radio-epidemiology data for cancer and CD, however a key feature of the NSRM-2014 is the formulation of particle fluence and track structure based radiation quality factors for solid cancer and leukemia risk estimates, which are distinct from the ICRP quality factors, and shown to lead to smaller uncertainties in risk estimates. Many persons exposed to radiation on earth as well as astronauts are life-time never-smokers, which is estimated to significantly modify radiation cancer and CD risk estimates. A key feature of the NASA radiation protection model is the classification of radiation workers by smoking history in setting dose limits. Possible qualitative differences between GCR and low LET radiation increase uncertainties and are not included in previous risk estimates. Two important qualitative differences are emerging from research studies. The first is the increased lethality of tumors observed in animal models compared to low LET radiation or background tumors. The second are Non- Targeted Effects (NTE), which include bystander effects and genomic instability, which has been observed in cell and animal models of cancer risks. NTE's could lead to significant changes in RBE and DDREF estimates for GCR particles, and the potential effectiveness of radiation mitigator's. The NSRM- 2014 approaches to model radiation quality dependent lethality and NTE's will be described. CNS effects include both early changes that may occur during long space missions and late effects such as Alzheimer's disease (AD). AD effects 50% of the population above age 80-yr, is a degenerative disease that worsens with time after initial onset leading to death, and has no known cure. AD is difficult to detect at early stages and the small number of low LET epidemiology studies undertaken have not identified an association with low dose radiation. However experimental studies in mice suggest GCR may lead to early onset AD. We discuss modeling approaches to consider mechanisms whereby radiation would lead to earlier onset of occurrence of AD. Biomarkers of AD include amyloid beta (A(Beta)) plaques, and neurofibrillary tangles (NFT) made up of aggregates of the hyperphosphorylated form of the micro-tubule associated, tau protein. Related markers include synaptic degeneration, dentritic spine loss, and neuronal cell loss through apoptosis. Radiation may affect these processes by causing oxidative stress, aberrant signaling following DNA damage, and chronic neuroinflammation. Cell types to be considered in multi-scale models are neurons, astrocytes, and microglia. We developed biochemical and cell kinetics models of DNA damage signaling related to glycogen synthase kinase-3(Beta) (GSK3(Beta)) and neuroinflammation, and considered multi-scale modeling approaches to develop computer simulations of cell interactions and their relationships to A(Beta) plaques and NFTs. Comparison of model results to experimental data for the age specific development of A(Beta) plaques in transgenic mice will be discussed

    Space Environment (Natural and Induced)

    Get PDF
    Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime
    corecore