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ABSTRACT 

Theoretical calculations were performed for the propagation and interactions of 
particles having high atomic numbers and energy through diverse shield materials 
including polymeric materials and epoxy-bound lunar regolith by using transport codes for 
laboratory ion beams and the cosmic ray spectrum. Heavy ions fragment and lose energy 
upon interactions with shielding materials of specified elemental composition, density, and 
thickness. A fragmenting heavy iron ion produces hundreds of isotopes during nuclear 
reactions, which are treated in the solution of the transport problem used here. A reduced 
set of 80 isotopes is sufficient to represent the charge distribution, but a minimum of 122 
isotopes is necessary for the mass distribution. These isotopes are adequate for ion beams 
with charges equal to or less than 26. To predict the single event upset (SEU) rate in 
electronic devices, the resultant linear energy transfer (LET) spectra from the transport 
code behind various materials are coupled with a measured SEU cross section versus LET 
curve. The SEU rate on static random access memory (SRAM) is shown as a function of 
shield thickness for various materials. For a given mass the most effective shields for SEU 
reduction are materials with high hydrogen density, such as polyethylene. The shield 
effectiveness for protection of biological systems is examined by using conventional 
quality factors to calculate the dose equivalents and also by using the probability of the 
neoplastic transformation of shielded C3Hl0Tl/2 mouse cells. The attenuation of 
biological effects within the shield and body tissues depends on the materials properties. 
The results predict that hydrogenous materials are good candidates for high-performance 
shields. Two biological models were used. Quantitative results depended upon model. 

xiv 
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CHAPTER 1. INTRODUCTION 

1.1 Overview 

A deep space mission is one which extends beyond the Earth's magnetosphere, and 

generally involves the transfer from an Earth orbit to a solar orbit. Beyond the Van Allen 

radiation belts, solar cosmic rays (SCRs) and galactic cosmic rays (GCRs) are the only 

major sources of space radiation. 

Since exploratory manned space missions of short duration have taken place in an 

Earth orbit, only the more intense space radiations, such as the radiations trapped in the 

Van Allen belts and SCRs, were considered. The exposure risk came from electrons and 

protons. For these radiations, conventional protection practice, which is an extrapolation 

based on the existing human database, may be adequate. The human database is mainly 

from y-ray exposure data obtained from the nuclear weapons studies ofWorld War II and 

from X-ray exposure data from patients undergoing radiation therapy. 

Fo~ a deep space mission, the exposure from geomagnetically trapped radiation is 

reduced by a rapid transit through this region and the exposure from SCR could be 

controlled by using a small, highly shielded volume. The major source of radiation for 

career exposure limits is the low level background GCR. The GCR consists of a low flux 

2 
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3 

of energetic bare nuclei which appear to fill our galaxy isotropically. It is known to extend 

from 0.1 Ge V to energies up to -1010 Ge V, and includes all of the elements from 

hydrogen up to the actinides. Because ofthis enormous energy range, humans and 

microelectronic equipment in a lunar habitat or on a manned mission to Mars will require 

more protection from GCR than has been used heretofore on shorter missions. Although 

galactic heavy ions are 1-2% of the GCR fluence, these energetic heavy nuclei (HZE) are 

of concern for radiation protection and radiation shielding technology, because gross 

rearrangements, mutations, and deletions in DNA are expected for humans which are the 

most radiation-sensitive component of the spacecraft. These HZE nuclei are biologically 

the most significant component and are very instrumental in causing single event upsets 

(SEUs) on microelectronics because of their unusually high specific ionization. SEU 

refers to the process by which ionizing radiation creates a sufficient number of 

electron-hole pairs in a circuit to establish an electrical current which causes a charge in 

the logic state of the device. Protecting space-borne microelectronics from SEU by 

transmitted radiation will benefit system reliability and system-design cost. 

For GCR, the broad energy spectrum ofHZE produces "surprises" for space-borne 

microelectronics, such as multibit SEUs that may not be seen in an accelerator experiment. 

The alterations induced in biological molecules by HZE nuclei are peculiar and are not 

readily produced by X-rays or y-rays. Thus, accurate methods to estimate the risk 

resulting from HZE nuclei are needed for both space-borne computer memory and 

biological systems. The bioresponse to HZE nuclei for delayed effects must be more than 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

---------·-··-·-··""'""' 

an extrapolation ofthe human exposure database which is based primarily on X-ray and 

y-ray exposures. 

4 

Radiation within a spacecraft structure, which interacts with onboard personnel or 

equipment, depends on the shield composition because different compositions have 

different atomic cross sections, nuclear attenuation, and distributions of fragmentation 

products. Selecting an appropriate composition of a structural piece, a container, or a 

coating is a recognized means of reducing the radiation hazard. A theoretical study was 

initiated to investigate the interaction and alteration of space radiations by various 

structural materials in order to select the materials that will provide the best shielding. 

The shield performance of potential space construction materials is compared theoretically 

in several different ways. 

The objective of this study is to predict the effectiveness ofvarious materials as 

shielding from HZE particles of GCR for a deep space mission. The typical nuclear 

radiation environment in space is summarized in section 1.2. Section 1.3 is a summary of 

the interaction and propagation of these primary space radiations through matter. Section 

1.4 discusses radiation-protection issues. Chapter 2 deals with the development of the 

NASA LaRC transport codes and the database for HZE and nucleonic components in the 

straightahead approximation to compute fluxes, energy spectra, and linear energy transfer 

(LET) spectra. In chapter 3, the fluences of projectile fragments behind shield materials 

are calculated for laboratory ion beams, and the effects of isotope selection on solution 

.... ------------------------------------------------
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5 

accuracy are examined. The role of nuclear cross sections in modifying the space 

radiation fields within shield materials is investigated to assess the transmitted environment 

by using the GCR transport code. The associated effects of the modified environment on 

the microscopic distribution of the energy absorption events are discussed for the 

application to a computer memory system in chapter 4 and for the application to a 

biological system in chapter 5. Chapter 6 summarizes the shield effectiveness of some 

appropriate materials for a deep space mission and draws conclusions. 
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1.2 High Charge and Energy Ions (HZE) 

Cosmic rays have been studied for a long time and there are references of their 

characteristics14
• These cosmic rays have extraordinary penetrating power and fall 

continuously upon the Earth from somewhere beyond. Since about 1925 this radiation has 

been known as cosmic radiation. The origin of most cosmic rays is probably in our 

galaxy, especially in supernova explosions2.3
, although the highest-energy components 

(2:1 017 e V amu-1
) may well be of extragalactic origin4

• The Sun contributes significantly to 

the flux of low-energy (.:S1 GeV amu-1
) cosmic rays arriving at the Earth. Disturbed 

regions on the Sun sporadically emit bursts of energetic charged particles into 

interplanetary space. The emission of these particles is associated with solar flares1
• 

The types of particle radiations in space5 are shown in figure 1 a. The predominant 

types .of particle radiations in the Earth's environment are solar wind protons, auroral 

electrons, solar storm protons, trapped protons, trapped electrons, solar cosmic rays 

(SCRs), and galactic cosmic rays (GCRs). There are temporal variations as well as spatial 

distributions. 

The solar wind is really an extension of the solar corona, and extends to at least 

several astronomical units (1 AU""' 1.5 x 108 km). The solar wind is a plasma, which 

means that a substantial fraction ofthe matter is ionized. It is composed mostly of protons 

6 
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and is persistent through variable parts of the quiet Sun's output. The solar wind protons 

have thermal energies of -1-10 ke V. Except when the Sun is active, the solar wind 

constitutes the most important particulate solar radiation. 

Charged particles are trapped in the geomagnetosphere, where there are two 

geomagnetically trapped radiation belts (Van Allen belts). The first (inner zone) is 

primarily centered at an altitude of2,000 km; and the second (outer zone), at 20,000 km. 

These Van Allen belts are spatially distorted by the solar wind pressing on the 

geomagnetosphere. 

A solar flare is an intense local brightening on the face of the Sun close to a 

sunspot. The solar abnormality results in an alteration of the general outflow of solar 

plasma at moderate energies, and in local solar magnetic fields which are carried by that 

plasma. As the solar plasma envelopes the Earth, the magnetic screening effects inherent 

in plasmas act to shield the Earth from galactic radiation known as a Forbush decrease, 

while contributing far more radiation of their own. 

When the solar plasma interacts with the geomagnetic field a disturbance or storm 

occurs. During an intense magnetic disturbance, the Van Allen belt magnetic fields are 

compressed into the Earth's atmosphere in polar regions and trapped electrons are lost. 

These auroral electrons are seen only in polar regions after solar flares. 

--------------- ·-··· 
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9 

The solar protons tend to be eliminated from equatorial regions of the 

magnetosphere as they are deflected by the horizontal geomagnetic field lines into space. 

However, solar primary particles arrive at the poles by moving along the near vertical 

geomagnetic filed lines and are thus not deflected. When the low-energy solar storm 

protons are channeled into the polar regions by the Earth's magnetic field, radio blackouts 

are produced in the lowest ionospheric region following certain solar flares, which is 

called a polar cap absorption event. 

Solar energetic particles (SEP) are sometimes emitted during some solar flares and 

these events occur more frequently during periods of high solar activity. Solar cosmic ray 

(SCR) events with periods of several hours to days represent one of several short-lived 

manifestations of the active Sun. The solar wind and solar CR are composed of the same 

types of particles, mostly protons. These two groups of particles are distinguished by their 

numbers and speeds (energy). Solar CR have energies measured in millions of electron 

volts. SEP events occur relatively uniformly in time at low intensity and low energy. Rare 

clusters of high intensity and high energy events however are critical to spaceflight. In 

general, these latter major events happen during the ascending or descending phase of the 

solar sunspot cycle. 

In addition to the radiation from the Sun, the Earth also is bombarded with 

charged particles from outside the solar system i.e. GCR. These particles have a range of 

energies that exceeds I 0 Ge V per nucleon. The region outside the solar system in the 
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outer part of the galaxy is believed to be filled uniformly with cosmic rays. At 1 AU, the 

GCR flux is affected by solar activity due to interaction with the solar plasma emitted into 

the interplanetary space, and is out of phase with the Sun's activity - the more active the 

Sun, the smaller the GCR flux at the Earth. 

The radiations with energies below 100 ke V - such as solar wind protons and 

auroral electrons - and the solar storm protons with energies below 10 MeV are 

considered biologically unimportant since they are shielded against by even gaseous 

barriers. The most important radiations for biological consideration are the trapped 

protons in the inner zone, the trapped electrons in both the inner and the outer zones, solar 

cosmic rays, and galactic cosmic rays6
• For interplanetary travel, the exposure from 

geomagnetically trapped radiations is reduced by a rapid transit through this region. 

Two major origins of highly penetrating and damaging space radiations are SCRs 

and GCRs. The SCRs consist mostly of protons and with the next significant component 

being alpha particles. Even though the abundance of some heavy ions from major solar 

events may increase rapidly by 3 or 4 orders of magnitude above the galactic background 

for periods of several hours to days, these events are not of great concern for long-term 

missions since they are very rare and shielding against SCR is relatively easy by using a 

shelter and personal shielding. The GCRs also consist mostly of protons and alpha 

particles, but have a small but significant component of heavier particles. The existence of 

heavy ions in the galactic cosmic rays is observed at a high altitude in the Earth's 
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atmosphere7
• The unusually high specific ionization of these energetic heavy nuclei (HZE) 

indicates that they may pose a significant health hazard. Galactic heavy ions will probably 

be the ultimate limiting factor in space operations, because their relative dose 

contributions are comparable to those of the light particles but their biological effects are 

far more serious6
• These are discussed below in sections 1.4 and 5.2. 

The intensity of the GCR flux varies over the approximately 11-year solar cycle 

due to changes in the interplanetary plasma resulting from the expanding solar corona. 

The GCR flux reaching us is decreased during intense sun-spot activity, because the 

low-energy GCR particles are deflected by the Sun's enhanced magnetic field carried by 

the expanding solar plasma. The maximum dose received occurs at solar minima due to 

the lower solar plasma output. Measurements based on balloons and satellites at solar 

minimum modulation8
, in which major solar particle events are usually absent, show the 

greatest extent ofGCR exposure6
• 

Cosmic radiation has turned out to be a vital contributor to our understanding of 

high energy phenomena in our galaxy. The cosmic rays constitute approximately one-third 

of the energy density of the interstellar medium and, on a galactic scale, they form a 

relativistic gas whose pressure is important to take into account in the dynamics of 

galactic magnetic fields8
• The cosmic ray nuclei are the only direct and measurable sample 

of matter from outside the solar system. It is a unique sample since it includes all of the 

elements from hydrogen up to the actinides. Cosmic rays are fully ionized nuclei. The 
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electrons are stripped from the atoms during acceleration to CR energies. The cosmic 

radiation arriving beyond the Earth's magnetic field at the distance of the Earth from the 

Sun (i.e., 1 AU) is composed of- 98% nuclei and- 2% electrons and positrons8
• In the 

energy range 108-1010 eV amu·I, where it has its highest intensity, the nuclear component 

consists roughly of 87 % protons, - 12 % helium nuclei and a total of- 1 % for all of the 

heavier nuclei from carbon to the actinides8
• 

While protons carry most of the CR energy, heavy particles give information on 

composition and propagation. Although GCRs probably include every natural element, 

not all are important for space radiation protection purposes. The elemental abundances 

for species heavier than iron (atomic charge number, Z>26) are typically 2 to 4 orders of 

magnitude smaller than that for iron9
• Figure 1b illustrates the spectra at 1 AU for 

hydrogen, helium, and heavy nuclei up to nickel at the 1977 solar minimum modulation 

from the relatively quiet solar cycle 21 (1975-1986). In the solar system some elements 

such as the L nuclei (Li, Be, B), F and several nuclei between Si and Fe are quite rare10
• 

Whereas in the CR flux these nuclei are present nearly as commonly as their neighbors10
• 

This shows that their origin is in the breakup of heavy particles during CR propagation 

which would not be present in the CR sources. This generation of secondary nuclei11 was 

shown using a one-dimension equilibrium solution ignoring ionization energy loss and 

radioactive decay. The more intense components of space radiations such as solar cosmic 

rays and trapped radiation were considered to be the principal radiation hazards for short 

duration exploratory missions since the continuous GCR background exposures are oflow 
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Figure lb. Energy spectra of primary galactic cosmic ray ions at the 1977 solar minimum 

13 
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intensity. For the particles of high charge and energy (HZE) as components of the GCR, 

the unique pattern of energy deposition on the microscopic scale raised issues with respect 

to effects on living cells12
• Delayed effects from long term exposures are suspected to 

come from continuous background HZE exposure of the GCR and they cannot be 

estimated by extrapolation from the well-established human database based primarily on 

X-ray and "{-ray exposures13
• The exposures by GCR will be the ultimate limiting factor in 

deep space missions. Increased lifetime cancer risk above the natural incidence will be 

limited within 3 percent in future NASA missions as recommended by the National 

Council on Radiation Protection and Measurementl4
• 
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1.3 The Straightahead Approximation and Velocity Conserving Fragmentation 

Interactions 

The propagation of galactic ions through matter has been studied by many 

researchers as a means of determining the origin of these ions as well as evaluation of 

required shielding. The calculations assume that the galactic cosmic components are 

transported through a material as their energies are attenuated by transfer to electrons of 

the media or by the generation of a multitude of cascading secondary particles from all 

subsequent-generation collisions. These calculations have been carried out using the 

straightahead approximation. This approximation reduces the calculation to a 

one-dimensional transport and it applies to both elastic and non-elastic collisions. 

Therefore, all emergent particles have the same direction of motion as the incident 

particle. Even though this approximation usually overestimates the dose, the error, by 

comparison to the exact calculations for space vehicle shielding, is often small15
• 

Space radiations are nearly isotropic. Thus, in this field of isotropic radiation, the 

dose at a specific slab-shield thickness with normal incident radiation is equivalent to the 

dose in the center of a spherical shield ofthe same thickness. With CR propagation 

through space, it is customary, and more useful physically, to express distances by the 

total mass of all atoms encountered (in grams per square centimeter). The thickness of 

15 
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absorber in g/cm2 can be converted to a linear thickness by dividing by the density of the 

shield material. This measure of thickness allows immediate comparison between various 

materials of equal shield mass. 

The projectile nuclei moving at relativistic speeds collide with stationary target 

nuclei. In the overlap region of the colliding nuclei, nucleons are removed from the 

projectile nucleus by direct knockout. As a result of the dynamics of the removal process 

of nucleons, the primary residue is highly excited. In the calculations presented here the 

compound nuclear model is used to describe the decay of the excited residual nucleus. A 

high-energy nucleus may make collisions while traversing a complex target nucleus, 

leaving behind a fraction of its energy as excitation energy, and directly ejecting one or 

more nucleons (protons or neutrons), or clusters such as deuterons, tritons, helions, or <X 

particles16
. A particular final nuclide as a result of the de-excitation of a primary residue is 

the nuclear fragment, sometimes referred to as a secondary product. Customarily in 

cosmic ion transport studies, the fragment velocities are assumed to be equal to the 

fragmenting ion velocity before collision at the interaction site16
'
17

• The assumption of 

velocity conservation (~ conserved) is adequate for space radiations calculations18 because 

the difference between the results with and without this assumption were found to be 

negligible6 
•• 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

·---------·--·-·····"· 

1.4 Application to Various Radiation-Protection Issues 

Radiation hazard risks are characterized as either deterministic or stochastic. 

Deterministic radiation effects are identified by relating the severity of injury to the degree 

of exposure. Even though a given level of exposure will result in different levels of injury 

among a group of individuals, the severity of injury for a given individual increases with 

increased exposure level. The injury in most tissues results mainly from the inability ofthe 

cells to undergo division ( clonogenic death). The three main deterministic effects14 are 

prodromal response (i.e., anorexia, nausea, fatigue, vomiting, diarrhea), temporary 

sterility, and ocular lens opacity. Stochastic radiation effects are identified by the 

probability of occurrence, not severity, being related to degree of exposure. Although a 

given level of exposure will represent some level of risk for a given group, the risk within 

a given subgroup may be higher or lower at the same exposure level. The main stochastic 

effect is cancer induction. The occurrence of cancer is associated with changes in the 

genetic structure of a cell (transformation) for which the normal controls against cell 

division have been inactivated. The primary radiation protection from solar flares is to 

control early somatic radiation effects, which may impact mission safety. The risk of 

stochastic effects is defined in terms of the excess lifetime probability of cancer. This has 

been of secondary importance for short term space operations in low Earth orbit (LEO). 

It has been the recommendation by the National Council on Radiation Protection and 

17 
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Measurement14 that exposure induced cancer risk be limited to not more than 3 percent 

above the estimated natural probability. 

18 

Career exposure limits are determined by late somatic effects. These in tum are 

the ultimate limiting factor on mission durations14
• Late somatic effects, such as cancer, 

are not immediately observable and occur by chance according to the laws of probability. 

These are not genetic or hereditary effects. The delayed effects are mainly the 

consequence of exposure to the highly charged energetic (HZE) nuclei of galactic cosmic 

rays (GCR). The radial spread of ionization by HZE nuclei is on the order of biological 

cell dimensions13 (2- 10 f..Lm), and the dimensions of many modem large integrated 

circuits6 (0.5 f..Lm). For this scale, the effects ofHZE nuclei, either directly by ionization or 

indirectly by the ionization of secondary electrons (B-rays), become important as the 

biologically most significant hazards and as interruptive events of electronic circuits. 

In LEO, the predominant exposure is from electrons and protons. For this 

radiation, extrapolations based on existing radiobiological data may be adequate. The 

quantities commonly used in radiation protection, such as dose, dose equivalent, and 

quality factor, have been used to establish radiation limits. The quality factor is a function 

of the linear energy transfer (LET) of the radiation and is a defined quantity rather than the 

result of a measurement. 
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A specific damage produced by radiation is called a biological end point and 

includes such consequences as leukemia, anemia, sterility, carcinogenesis, shortening of 

life span, etc. There is growing evidence ofbiological end points which are peculiar to 

high-LET HZE exposures that are not readily produced by X-rays or y-rays. For such 

biological end points, the relative biological effectiveness (RBE), which is the ratio of 

y-ray and specific ion exposure levels resulting in the same biological end point, is very 

large or possibly undefined. The RBE becomes infinite ify-rays do not produce the 

biological end point. This occurs, for example, in sister chromatid exchanges in resting 

human lymphocytes irradiated with 238Pu cr-particles19
, abnormalities in stem cell colonies 

surviving similar <X-particle irradiation20
, and the partial disintegration of chromosomes 

after irradiation with high-energy heavy ion beams21
• Thus, a new method to predict the 

risk resulting from exposure to GCR radiation must be developed. This must be more 

than an extrapolation of the human exposure database for low-LET exposures. Accurate 

conversion of the radiation environment to estimated exposure fields at specific tissue 

sites. 

In passing through shield material, the GCR interacts mostly by transferring small 

amounts of momentum to orbital electrons causing ionization of the atomic constituents . 

Although nuclear reactions are far less numerous, their effects are magnified because of 

the large momentum transferred to the nuclear particles and the struck nucleus itself. 

Many secondary particles of nuclear reactions are sufficiently energetic in tum to produce 

similar nuclear reactions and thus cause a buildup of secondary radiations. On the other 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

20 

hand the secondaries produced by the fragmentation are less ionizing and have less LET. 

Thus they may pose a reduced hazard. 

Radiation shielding is an attempt to control the radiation environment, in particular 

to lower the LET of the incident ions. While the traditional structural material in the 

space program has been aluminum because of its strength per unit mass and its good 

thermal properties, other structural shield materials would better reduce the exposure risk 

from space radiations. Shield material for GCR may be characterized by what if transmits. 

There is larger interaction ( cm2/g) between HZE nuclei and light nuclear targets22
, so 

hydrogen-containing materials, such as many organic polymers, are most effective per unit 

mass. 

Neutrons, formed in nuclear reactions between HZE particles and nuclei in shield 

materials, would be present in the internal environment of a space vehicle and would 

interact with onboard personnel or equipment. Fast neutrons(> 1 MeV) and protons that 

are produced in fragmentations can produce energetic reactions with the silicon of an 

electronic ~evice, resulting in the production ofheavy recoil ions which can cause single 

event upsets (SEU) in sensitive components. Being uncharged, these secondary neutrons 

cannot dissipate their kinetic energy through Coulombic interactions. Neutrons can only 

lose energy by collisions or reactions with a nucleus. The lighter the nucleus, the greater 

the amount of energy that can be lost in an elastic collision with a neutron. Neutrons are 

thermalized by repeated collisions with light nuclei, especially protons in a hydrogenous 
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polymer medium. While low-energy secondary charged particles are stopped near their 

point of production, low-energy neutrons are able to migrate far from the beam axis. At 

large distances from the beam, only a net outward flux oflow-energy neutrons is 

observed. This flux decreases exponentially because of absorptive processes in the 

medium (ultimately, neutron capture). The products of such reactions are very often 

radioactive. Thus, protection from low energy neutrons is important during a long 

duration space flight. The addition of boron to a shield is one means that allows the 

material to absorb low-energy neutrons because the isotope 1~ has a very high neutron 

capture cross section. The products ofthe reaction, 4He and 7Li, are not radioactive and 

are readily,absorbed in the material. Thus, boron-containing polymers have possible uses 

as structural material for a spacecraft or as a container for electronic devices. 
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CHAPTER 2. GALACTIC COSMIC RAY TRANSPORT 

2.1 Introduction 

Heavy ion transport is important for an understanding of the origin of galactic 

cosmic rays (GCR). The average density in interstellar space is 1 atom/cm3
, and the path 

lengths for nuclear collisions are on the order of3 to 4 g/cm2
• Thus in interstellar space 

fragmentation cross sections are needed only to the first order, however higher order 

terms cannot be ignored in accelerator or space shielding transport problems23
• 

Approaches to the solution of high-energy, heavy-ion (HZE) propagation, 

including the ionization energy loss, have been developed over the last 20 years. Wilson 

derived an expression for the high-energy heavy ion transport problem including in the 

first-order in collisions term and then examined it up to 6-order corrections by an iterative 

method23
• The straightahead approximation mentioned earlier with velocity conservation 

on fragmentation usually appears sufficiene8 for space applications because the primary 

ions display a broad energy spectrum and arrive isotropically. Thus details which might be 

seen in a more exact calculation are averaged over. The calculation shows that a 

first-order perturbation theory is generally insufficient to represent the transport process. 

Solution methods included the nuclear cross section's dependence on fragment energies. 

Another approach has been made by Wilson who added a second collision term to an 

22 
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analytic expansion24 of the heavy ion transport solution. This term was found to be very 

important in describing 670 MeV/amu 2<>:Ne beams25
• The three-term expansion of 

perturbation theory was modified to also include the effects of the energy variation of the 

nuclear cross section25
• The results from the code were further compared with 2'Ne 

transport experiments at the Lawrence Berkeley Laboratory (LBL) BEV ALAC 

accelerator6
• 
27

• 

To investigate the interaction and alteration of energetic heavy nuclei of GCR by 

structural materials, a laboratory ion-beam transport code28 (LBLBEAM) with 

perturbation theory is used. Total ion fluences at the down stream face of a shield for 

incident monoenergetic, single ion beams are calculated in the present work for different 

shield thicknesses. The monoenergetic projectiles are 56Fe beams at an incident kinetic 

energy of605 MeV/amu and 2'Ne beams at 425 MeV/amu. These projectiles are chosen 

for analysis because relativistic 56Fe nuclei are among the dominant HZE particles in GCR 

of radiobiological significance for manned spaceflight and 2'N e is about equal in abundance 

to iron. 

To provide computationally efficient HZE transport codes for laboratory ion beam 

applications, a radical reorientation was made29
• For laboratory radiations, nearly 

monoenergetic beams may be handled with an analytic representation, while for the broad 

continuous-energy spectrum of space radiation numerical methods are required. The 

perturbation code was converted to use the nuclear fragmentation (NUCFRG) database30
• 
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An analytic solution to the HZE transport equation in terms of a Green's function 

representing nuclear and atomic/molecular processes (GRNTRN31
) is used. The 

nonperturbative Green's function code virtually eliminates numerically generated and 

propagated errors29
• The solutions themselves must represent the fields associated with all 

of the isotopes produced in the fragmentation process. The solution convergence in HZE 

transport is examined by choosing various selections of isotopes used in the calculation to 

determine which contribute to the solution in a significant way. 

The integral form of the transport equation was also used to derive a numerical 

marching procedure to solve the cosmic ray transport problem32
• In this procedure, the 

boundary condition fluences are propagated by a small distance into the interior region of 

and these are then propagated in successive cycles to arbitrary distance32
• This marching 

procedure can easily include the energy-dependent nuclear cross sections30 within the 

numerical procedure. A comparison of the numerical procedure32 with an analytic 

benchmark solution to a simplified problem33 validates the solution technique to about 1 

percent accuracy. Thus, analytic methods23 were applied in a marching procedure. 

Solutions to a more complete theory were derived with the general Boltzmann equation 

and simplified by using the standard assumptions for the straightahead equation in the 

continuou~ slowing down approximation ( -d.E/dx) with the assumption that heavy 

projectile breakup conserves velocity18
• A numerical procedure was derived with the 

coupling of the heavy ions to the nucleon fields32
• This galactic cosmic ray (GCR) 

transport code, HZETRN18
, is used to predict the propagation and interactions ofthe 
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deep-space nucleons and heavy ions through various media for further investigation of 

shield effectiveness. 

25 

Calculations are performed on a VAX 4000/500 system by using transport codes 

(LBLBE_AM28
, GRNTRN31

, HZETRN18
), the nuclear fragmentation database 

(NUCFRG30
), and a LET distribution code (LE~) developed at NASA Langley Research 

Center. The computation time required for the nonperturbation code (GRNTRN) is 

approximately 10 minutes31
, while 15 minutes for evaluation of the first collision term and 

45 minumtes for the second collision term for the perturbation code (LBLBEAM). 

Theories of codes are summarized in the following sections. 
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2.2 NASA-LaRC HZETRN Code System 

2.2.1 Modeling ofMonoenergetic, Single-Ion Beam Transport with Perturbation Theory 

In moving through extended matter, heavy ions lose energy through interaction 

with atomic electrons along their trajectories because electrons are so much lighter. On 

occasion, they interact with nuclei of the matter and produce ion fragments moving in the 

forward direction and low energy fragments of the struck target nucleus. The rare 

nuclear reactions are important because a large amount of energy is transferred in the 

reaction and the ion fragments are energetic. With the straightahead approximation and 

neglecting heavier target secondary fragments, the Boltzmann transport equation is 

written as28 

(2.1) 

where (Mx,E) is the flux of ions of type j with atomic mass Ai at x moving along the x-axis 

at energy E in units ofMeV/amu, cri is the corresponding macroscopic nuclear absorption 

cross section, Sj(E) is the change in E per unit distance, and mik is the fragmenting 

parameter for ion j produced in collision by ion k. The range of the ion RiE) is then 

obtained bf8 

fE dE' 
Rj(E) = o Sj(E') 

From Bethe's theorf" 

- ApZJ-
Sj(E) = --2 S p(E) 

AjZp 

(2.2) 

(2.3) 

26 
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for which 

zJ ~ 
y.Ri(E) = yRp(E) 

J p 
(2.4) 

The subscript p refers to a proton. The parameter vi is defined as28 

zJ 
Vj = Aj ' (2.5) 

so that 

(2.6) 

The solution to equation (2.1) is to be found subject to boundary specification at 

x=O and arbitrary E as28 

cj>j(O,E) =~{E). 

Usually ~(E) is called the incident beam spectrum. The boundary condition for a 

monoenergetic beam of type M ions is taken as28 

Fj(E) = OJM o(E-Eo), 

(2.7) 

(2.8) 

where S;Mi.s the Kronecker delta, o(E-EJ is the Dirac delta, and E0 is the incident beam 

energy. The uncollided flux to equation (2.1) for a monoenergetic beam oftype M ions 

ci>J
0

) (x, E) = sj~E) exp( -(jjX) OJM o[ X+ Rj(E) - RM(Eo) J . 

For the first collision term, Wilson et al. 28 get 

(2.9) 

c~>JI>cx,E) = ~m.JMa.JM I vi I exp{-
2
1 aiCx-Rj(E) -11']-

2
1 aM[x+Rj(E)+ll'J} 

Sj(E) VM- Vj 

(2.10) 

(2.11) 
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for Ri(E) such that 

vv~[RM(Eo)-x] < Ri(E) < ~~RM(Eo)-x. 
J J 

(2.12) 

Otherwise $l'(x,E) is taken to be zero. After a complicated but straightforward 

manipulation, a similar result may be obtained for $?'(x,E). 

The solution to equation (2.1) is approximated as 
(0) (1) (2) 

q,j(x,E) =$i (x,E)+$i (x,E)+$i (x,E) (2.13) 

where $?'(x,E) is the attenuated primary ion fluence, q,t>(x,E) is the first collision term 

and q,?'(x,E) is the second collision term. Higher order collision terms are neglected. The 

results of the first collision term, $?(x,E), and the second collision term, $/2'(x,E), are 

integrated numerically over their entire energy spectrum. The total integral flux associated 

with each term is evaluated by using 

ct>JI>(x) = J~ q,Jil(x,E)dE == ~q,Jil(x,Ei)(M) 
I 

(2.14) 

«~>?l(x) = J~ q,J
2
l(x,E)dE == ~q,?l(x,Ei)(M) 

I 

(2.15) 

For a three-term perturbation expansion, the total ion fluence is 

cl>j(x) = ct>Jo>(x) + «~>Yl + ct>Yl (x). (2.16) 

The flux of each identified nucleus with charge Z, q,z<x,E), is defined as 

$z(x,E) =~$z.A;(x,E) (2.17) 
AJ 

where $z,11/x,E) is the same as $ix,E) of equation (2.13) for all of the isotopes of 

projectile fragment charge Z with different atomic mass Ai. Equation (2.17) is integrated 

numerically over the entire energy spectrum and the total integral flux for each charge Z is 

approximated as 

«<>z(x) = J~ $z(x,E)dE ""~$z(x,Ei)(M) . 
I 

(2.18) 
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These are compared for different shield materials in section 3.3 .1. In these calculations, 

the fragmentation cross sections of Silberberg, Tsao, and Shapiro35 were the only ones 

used. 

29 
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2.2.2 A Semiempirical Nuclear Fragmentation Model 

Fragmentation cross section databases are a major input into the transport codes. 

The Silber~erg-Tsao model36 is used mainly for high charge and energy ion (HZE) 

fragmentation on hydrogen targets. The scaled Silberberg-Tsao cross sections augmented 

with Bertini cross sections37 are used for the lightest fragment (n, p, 2H, 3H, 3He, 4He) 

cross sections for nucleon and cluster production with nucleon collisions. 

The essence of the NUCFRG code is that the mass removal M from a projectile of 

mass Ap by collision with a target of mass AT is a function of the impact parameter b for 

arbitrary target nuclei. In the abrasion-ablation fragmentation model16
, the projectile 

nuclei, moving at relativistic speeds, collide with stationary target nuclei. In the abrasion 

step, nucleons are removed by direct knockout in the overlap region of colliding nuclei. 

The highly excited remaining projectile piece continues its trajectory with essentially its 

precollision velocity and subsequently deexcites by the emission of gamma radiation 

and/or nuclear particles. This step is the ablation stage. The NUCFRG code calculates 

the average excitation from frictional forces at the interface of the interaction zone and an 

empirical correction to the surface energy for highly misshapen nucleP8
• The frictional 

forces are derived from two-body collisional processes, and the corresponding excitation 

energy is a fluctuating variable. The average frictional force is generated by a random 

30 
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variable30 and assumed to fluctuate between its maximum and minimum values with equal 

probability. Only nuclear radii are determined with the root-mean-square radius obtained 

from experiment for mass ~ 26, and from parameterized experimental values for mass > 

26. 

At a given impact parameter b, there is a distance of closest approach r for which 

the interaction takes place, which one obtains from17 

b2 =r(r-rm) (2.19) 

where r m is the distance of closest approach for zero impact parameter. If r is large, the 

interaction is dominated by Coulomb excitation. At smaller distances, the overlap ofthe 

uniform spheres of colliding nuclei (nuclear densities) strongly interacts and mass is 

removed from the projectile and target. 

The total number of nucleons removed through the abrasion-ablation process is 

given as a function of the impact parameter h as16 

M =.l\abr(h)+.l\abl(h) (2.20) 

The impact parameter is related to the impact separation r for a Coulomb trajectory16 in 

equation (2.19). For a Coulomb trajectory, the kinetic energy ofthe projectile is 

decreased as energy is given up to released nucleons in the collision event by assuming 

that 10 MeV is the average binding energy. The nuclear fragmentation cross sections are 

approximated according to the abrasion-ablation model ofBowman, Swiatecki, and 

Tsang39
• The abrasion-ablation cross section for removal of M nucleons, cr(M), is39 

cr(M) = 1th~ - 1th~ (2.21) 
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where b2 is the impact parameter for which the volume of intersection of the projectile 

contains Aabr nucleons and the resulting excitation energies release an additional Aabt 

nucleons at the rate of one nucleon for every 10 MeV of excitation17
• The charge 

distributions of the final projectile fragments are strongly affected by nuclear stability. 

The Rudstam40 charge distribution formula for a given a(M) with a calculated 

normalization constant is used to calculate the nuclear fragmentation cross section for a 

specific fragment. 

The charge of the nucleons removed, AZ, is calculated according to charge 

conservation41 

(2.22) 

and is divided among the nucleons and light nuclei CH, 3H, 3He, and 4He) produced by the 

interaction. The abraded nucleons are those removed from that portion of the projectile in 

the overlap region with the target. Therefore, the charge removed by abrasion is assumed 

to be proportional to the charge fraction of the projectile nucleus as16 

Z Z .Aabr 
abr = P Ap · 

The charge release in the ablation is then16 

Zabl = AZ - Zabr . 

Because of the unusually tight binding of the alpha-particle, helium production is 

maximized in the ablation process41 

N a = { rnt( Z;bt ), rnt( A ~bt ) Lin 

(2.23) 

(2.24) 

(2.25) 
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where Int(x) denotes the integer part ofx. The other light nuclides are likewise 

maximiSed from the remaining ablated mass and charge in the order of decreasing binding 

energy. The number of protons produced is given by charge conservation as41 

Np =Zabt- 1: Z;N;. 
i=2,3,4 

Similarly, ~he number of neutrons produced is given by mass conservation as41 

Nn =Aabt-Np -"J;.A;N; 
I 

where i ranges over all the mass 2,3, and 4 ablated particles. 

(2.26) 

(2.27) 

For the central collisions, the projectile disintegration is assumed to be nucleons if 

Rp < Rr, where Rp (Rr) is the projectile (target) radius, so that30 

and 

Otherwise it is ignored. 

Fragmentation contributions from electromagnetic dissociation (EMD) processes 

are considered for single nucleon removal30
• In EMD, the virtual photon field of the 

target nucleus interacts electromagnetically with constituents of the projectile to cause 

excitation and eventual breakup30
• 

The calculation is performed forM = 1 to M = Ap- 1. The results are input 

databases for transport codes (a nonperturbative Green's function code, GRNTRN31
; and 

a galactic cosmic radiation code, HZETRN13
). 
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2.2.3 Modeling ofRealistic Ion Beam Transport with a Nonperturbative Green's Function 

A heavy-ion transport code including a database has been provided for laboratory 

ion beam applications as an analytic solution to the heavy-ion transport equation in terms 

of a Green's function representing nuclear and atomic/molecular processes. Results based 

on the new code were compared with perturbation theory results31
, which previously had 

been compared with those of 2'Ne transport experiments at the Lawrence Berkeley 

Laboratory (LBL) BEV ALAC accelerator6
• 
27

• In the LBL comparison, the primary errors 

in the computation were attributed to the nuclear cross sections and the approximations 

used in applying acceptance functions31
• The perturbation code was converted to access 

the NUCFRG database30
•
42

, then a direct comparison between the perturbation code and 

the nonperturbative Green's function code was made31
• In this comparison, the sequence 

of perturbation terms appeared to be converging toward the nonperturbative result even 

though the lighter fragments did not converge in the first three perturbation terms31
• The 

nonperturbative Green's function code eliminates the need to control truncation and 

discretization errors29
• 

For multiple charged ions, the Boltzmann equation may be reduced to23 

(2.28) 

34 
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where a1k is the macroscopic cross section for the collision of ion type k to produce an ion 

of type j . a1k is obtained from the NUCFRG database41 and equivalent to m1kak in 

equation (2.1). 

The solution to equation (2.28) is found subject to the boundary condition 

cpj(O,E) =jj(E). (2.29) 

For this boundary condition, laboratory beams have only one value ofj for which.fJE) is 

not zero. The function,J;(.E), is described by a mean energy E0, and an energy spread, a, 

such thae8 

1 [ (E-Eo)
2

] 
jj(E) = ['f.i a exp 2a2 . (2.30) 

The usual method of solution is to solve equation (2.28) as a perturbation series. In 

practice, the computational requirements limit the usefulness of the technique for deep 

penetration where many higher order terms are required29
• 

A Green's function (G1m) is introduced31 as a solution of 

[ :x - a~Sj(E) + ai ]ajm(x,E,Eo) = ~ aikGkm(x,E,Eo) 

subject to the boundary condition 

Gjm(O,E,Eo) = 31;n3(E -Eo). 

The solution to equation (2.31) is given by superposition as31 

cpj(x,E) = L J G1k(x,E,E1)/k(E1)dE1 

k 

(2.31) 

(2.32) 

(2.33) 

lfG1k(x,E,E~ is known as an algebraic quantity, the evaluation of equation (2.32) may be 

accomplished by simple integration techniques and the associated errors are avoided in 

solving equation (2.28) numerically6
• 
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The Green's function equations can be simplified by transforming the energy into 

the residual range (r) as 

r <E> -JE 1 dE' 1 - 0 S-(E1) 
. J 

and defining new field functions as43 

'JIJ(x, r1) = S1(E)<Pi(x, E) , 

The nonperturbative solution term JJ1m is given as43 

1 --cr o;:: 1 VJ(gjm(X) -e--cr.JXOJm] 
JJJm(x,rJ,rm)=e :JXo1mu(x+r1 -rm)+ ( ) 

X Vm -Vj 

(2.34) 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

Here v1 is the range scale factor as v !J = v J m and defined in equation (2. 5), and fhm(x) is 

obtained through the following31
• Define g(j) and g as a function of n arguments31 

g(j) = e--crp' 

(j 
. . . } _ g(j1,h, ... ,}n-I.}n}-g(j1,}2, ... ,}n-l,}n+d 

g 1,]2, .. . ,J n,] n+l - (j. _ 0'. · 
}n+l }n 

Then: 

for any positive values of x and y 1
• 

(2.39) 

(2.40) 

(2.41) 

The approximate solution of the transformed equation (2.31) is then given by43 

(2.42) 

In equation (2.42), r'mz and r'mu are given by lower and upper limits of residual range for a 

proton or neutron removal43
. The symbol F m(r~) refers to the integral spectrum43 

F m(r~) = f~fm(r)dr. (2.43) 

This is further defined as43 
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Fm(r~) =Fm(E1
) 

with 

F m(E1
) = J;,Jm(E)dE 

and 

J
Et dE 

r~= o Sm(E). 

Note that the computational procedures are affected by the number of elements in 

37 

(2.44) 

(2.45) 

(2.46) 

equation (2.41). The number of terms in the application of equation (2.41) increases as 

N-, where N is the number of isotope fields represented in the solution given by equation 

(2.42). For computational efficiency, the number of isotopes is minimized without greatly 

compromising the accuracy of the solution. The effects on isotope selections are studied 

for an adequate laboratory ion beam simulation by using a nonperturbative Green's 

function code31
• 
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2.2.4 Modeling of Galactic Cosmic Radiation Transport with a Marching Procedure 

To predict the propagation and interactions of the deep space nucleons and heavy 

ions through various media, the Langley Research Center galactic cosmic ray (GCR) 

transport code, HZETRN18
, is used. This code includes the transport of high-energy 

heavy ions up to atomic number 28 and solves the fundamental Boltzmann transport 

equation {2.1 ). The solution method uses a combination of analytic and numerical tools. 

The GCR transport problem is transformed to an integral along the characteristic fluence 

curve of that particular ion. As a result ofthe conservation ofvelocity in fragmentation, 

the perturbation series is replaced by a simple numerical procedure. 

For the purpose of solving the fundamental Boltzmann transport equation {2.1 ), a 

method of characteristic solution18 defines the coordinates as 

(2.47) 

(2.48) 

where T\i varies along the particle path and ~i is constant along the particle trajectory18
• 

The new fluence functions are taken as18 

X;(1'\;, ;1) = Sj(.E)<l>J(x,E) = 'lfj(x, rj(E)) 
(2.49) 

Xk(T\J·, ;J) = Xk(T\k, ;k) 

38 

(2.50) 

(2.51) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

-- .. - -- ----- ---------- --· ---------------·- -----------··-··-----·······-. ' ..... "' ........... . ..... ---·--·· -·---·-·-·--- -----·--

1'\i- ~j = ~~ (1'\k- ~k) 
J 

With this coordinate, equation (2.1) becomes 

[ 2 ~- +<Tj ]X;(TlJ·, ~) = ~mp,<Tk~~Xk(llf>~) 

where <11 is assumed to be energy independent. By using line integration with an 

integrating factor18 and defining 

'Jfj(X, rj) = X;(l'\i, ~j) , 

39 

(2.52) 

(2.53) 

(2.54) 

where we have dropped the argumentE ofr1(E). A valid solution of equation (2.1) is18 

J
x "' Vj Vj 'Jfj(x, rj) =exp( --O'jX)'J'j(O, rj + x) + dz exp( -<TjZ) ~ mjk<Tk-v \jlk(x- z, rk + v-z) . (2.55) 
0 k k k 

Equation (2.55) provides a means of propagating the boundary conditions to an interior 

region of small distance x and may be used in successive cycles to propagate to any 

arbitrary distance x+h. For given values of the solution at x, the values at x+h are taken 

J
h V· V· 

dz exp(-<TjZ) l:m1k<Tk-f-'l'k(x+h -z,rk+ -f-z). 
0 k k k 

(2.56) 

This is further approximated by18 

'J'j(X + h, rj) =exp( -<Tjh )\jlj(x, rj +h) + 

"' Vj[exp(-<Tjh)-exp(--O'kh)J ( Vjh) 
tmjk<1kvk <Tk-aj \jlk x,rk+ Vk (2.57) 

This is a marching procedure which can be continued indefinitely to greater depths within 

the material. Equation (2.57) is the basis of the numerical method. The method requires a 

simple numerical interpolation in one variable and a single summation. The basic step size 

in his taken as 1 g/cm2
• 
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2.2.5 LET Distribution 

The unit of dosage in radiation protection is the sievert (Sv) which is equal to the 

dose in gray (Gy), which is defined as 1 J kg·1
, multiplied by the relative damage done by a 

specific kind of radiation. The latter quantity depends on several factors. 

In radiobiology, the most important factor is the density of ionization. This for an 

individual charged particle is simply its stopping power ~(E), or for neutrals and 

secondaries one uses by the linear energy transfer or LET, the average energy deposited 

per unit length, possibly in gm/cm2
• Thus, the biological response or risk to radiation 

exposure is assumed to be related to the energy absorbed per unit mass within a 

macroscopic volume of the biological material44
. For the same energy deposited, high

LET radiations as contrasted to radiations oflow-LET such as X-rays, y-rays, and P-rays, 

produce localized heavy damage which is clearly as important determinant oflong term 

biological response. Although an LET -dependent relative biological effectiveness (RBE) 

is useful for charged particles of relatively low kinetic energy, there are great concerns for 

the biological effects of high charge and energy (HZE) ions in deep space caused by the 

lateral spread of high energy deposition. Cross sections for such interactions can be larger 

than the geometric cross section due to the secondary electrons produced along the path 

of the energetic ion45
. Even though this limits LET concepts to low charge and low 

40 
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energy particles, LET is still an important rough indicator for HZE particles as well. A 

linear energy transfer distribution is a guide in assessing biologically significant 

components. 

Techniques to generate LET distribution have been clearly described in the 

analysis of shielding for protection of biological and electronic equipment by Wilson and 

Badavi46
• From the flux of particles with energy E, <j)_g{E) dE, the flux of particles with 

LET, <PL(L) dL, is defined as46 

I dL 1-1 

tPL(L) = dE tPE(E) (2.58) 

where L is as a function of E, and ldLidEI-1 is the Jacobian between E and L spaces. <PiL) 

has a singularity at dL!dE=O, so that it is defined on open intervals as46 

I dL 1-1 

tPL(L) = ~ dE B tPE(EB) (2.59) 

where B denotes various branch functions, and E8 is the energy of each branch associated 

with L for all values of L=L(E8 ). In specific applications, a representation for <PL(L) is 

simplified since L(E) has one maximum value and one minimum value at other than zero 

energy. Furthermore, L(E) has continuous second derivatives allowing a Taylor series 

expansion as 

L(E) ::::L(EB)+fL"(EB)(E-EB)2 (2.60) 

in the neighborhood of the branch limits. At the branch limit, dL!dE=O, and from equation 

(2.60) 

dL =L~-L~(E-EB)=O 
dEB 

L~ =LZ(E -EB) 

and 

(2.61) 
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(E-EB) = 21 (L~:B) I· (2.62) 

From equations (2.61) and (2.62), 

dL =L~ ·=LZ 21 (L-,fB) I = J2ILZ(L-Ln)l 
dEn L0 

(2.63) 

at the branch limit. Therefore, 

«PL(L) = cpE(EB)[ J2ILZ(L -Ln) I rl (2.64) 

in the neighborhood of the branch points, where the subscript B denotes evaluation at the 

branch limit46
• 

The maximum and minimum branch points46 are found at dL/dE=O from the 

mapping of energy to LET in which a maximum LET (LmaJ occurs at a rather low energy 

(EmaJ and a minimum LET (LmiJ is at a high energy (E~ that is approximately given by 

an inverse dependence on the energy along the ion's trajectory. There is a gradual increase 

in LET toward energies beyond Emin because of relativistic effects. When the branch 

points and equations (2.58) through (2.64) are considered, the triple valued branch 

functions are represented by46 

{q,LJn ={I '!Ji IL«PEp where E; E {E,Jn (2.65) 

and B denotes one of the three branches. The sequence of E1 with the lower branch, {E1} 1, 

is defined as those values of energy less than Emax at rather lower energies. The energy 

sequence with the main branch, {E;}m, is defined by Emax < E1 < Emin and the sequence {E1}h 

with the high branch defined as those values of energy greater than Emin at higher 

··-- ---·-----
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Since cj»L1 is unbounded near the branch limit, an extrapolation into the 

neighborhood of the branch limit is provided for sufficiently close E1
46 

ci»LI = I~ I ici»EI 

43 

ci»EI =I~ lici»LI = J2IL~(L,-LB)I ci»LI. 

Taking equation (2.66) into (2.64) 

IL,-LBI 

(2.66) 

ci»L(L) ;=: ci»LI IL-LB I (2.67) 

where L1 is the nearest value to the branch limit LB in the appropriate domain46
• The 

numerical branch limit values of Emax• Emin• Lmax• and Lmin depend on the charge and mass of 

the particles and are specified for each ion type in the radiation field46
• The mapping of 

LET to energy is qualitatively the same triple valued function but is quantitatively different 

for each ion type. An important feature of the LET at the branch limits, LB, is that the 

LET of all charged particles moving with the same velocity in a given absorber is 

proportional to the squares oftheir charges. 

In the absence of nuclear effects, the fluence within a medium at a distance x from 

the boundary is46 

cj»(x,E)S(E) = cj»(O,Ex)S(Ex) (2.68) 

where cj»(x,E) is the fluence at a distance x within a medium, S(E) is the stopping power , 

cj»(O,E..) is the fluence at the boundary, S(E,) is the stopping power at the boundary, and 

the energy Ex at the boundary is calculated from 

R(Ex) =R(E)+x 

Ex =R-1[R(E) +x]. 

Ifthe target thickness, x, is large enough, x >> R{E), then Ex= R:' (x), so that 

cp(x,E)S(E) = cj»(O,Ex)S(Ex) == cp[o,R-1(x)]S[R-1(x)] 
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and the spectrum reaches an equilibrium value as46 

q>(x,E) 
S[R-1 (x)]q>[o,R-1(x)] 

S(E) 

Equilibrium is achieved quickly at low energies. At high energies, nuclear effects 

44 

(2.69) 

dominate and equilibrium is not achieved. The limit of a pure equilibrium spectrum for 

each particle type} at all energies would be given by q>JE)SfE) = c, where cis a constant 

value. The equilibrium differential LET spectra have been given elsewhere46 for ions ofH, 

He, Li, and C with the c = 1. Comparison ofthe equilibrium differential LET spectra 

shows that the equilibrium occurs at a higher energy loss with heavier ions. These 

equilibrium limits are proportional to the squares of their charges. 

The integral LET spectrum is defined and related to integral energy spectra as46 

<ll(> L) = J~max q>L(L1)dL1 = <ll(> E1)- <ll(> E2) +<ll(> E3) , (2.70) 

where E 1, E 2, and E3 are the three roots of S(E) = L. The integral equilibrium spectrum is 

given for~?:.. E3
46

, 

<ll(> E) = c J! L'fj;:) = c( R(~) - R(E)) 

where the arbitrary value~ is taken to be 10 GeV. 

The integral LET spectrum for ~ ?:.. E3 is then46 

<ll(>L) = c( R(~) +R(E2) -R(EI) -R(E3)). (2.71) 

For the higher-LET region only, there are two rootsE1 and E 2
46

• Then equation (2.71) is46 

Jl; dE' Jl; dE' ( ) <ll(>L)=<ll(>EI)-<ll(>E2)=c E• L(E') -c E
2 

L(E') =c R(E2)-R(E1) . (2.72) 

From range-energy relations, the range of a particle would be roughly proportional to the 

square of its energy if it is nonrelativistic. Using this qualitative idea, the range at 
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relatively much lower energy is neglected. Thus, the integral LET spectra are 

characteristic of the main branch of the LET curve except Lmax as46 

<t>(>L)-=cR(E2) , 

45 

(2.73) 

where the ion with sufficiently high velocities is stripped of all of its electrons and the LET 

is essentially all through electronic excitation and ionization of the stopping material. At 

(2.74) 
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CHAPTER 3. EXPERIMENTAL/THEORETICAL STUDIES 

3.1 Introduction 

The high energy heavy ion radiation components are usually attenuated to lower 

linear energy transfer (LET) lighter ions as a result of nuclear interactions between 

projectile and target nuclei. Recall that LET is proportional to the square of the ion 

charge. These interactions become more significant as the particles penetrate further into 

the shield medium. The internal radiation environment within a spacecraft structure, 

which inte("acts with onboard personnel or equipment, depends on the shield composition. 

This dependence is a result of differences in atomic cross sections, nuclear attenuation, 

and the distribution of fragmentation products in different shield materials. Calculations 

show that hydrogen presents the greatest cross section per unit mass47
• It also provides 

the maximum energy reduction of secondary neutrons in an elastic collision, and absorbs 

neutrons of reduced energy. Thus, hydrogen-containing materials, such as polymers, have 

been chosen as subjects for the calculations. The preparation of experimental studies of 

the attenuation of ion beams in potential space construction materials or as a container for 

microelectronic devices will utilize theoretical predictions based on the current 

understanding. 

46 
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Even though ionization cross sections are much larger, monoenergetic primary 

particles if of sufficient energy will still suffer nuclear reactions before stopping in the 

shield medium. In nuclear reactions, the secondary radiations have broad distributions of 

secondary energies for lighter particles. The most energetic secondaries are confined in a 

narrow cone about the initial direction and are closely confined to the initial beam axis 

over at least the first mean-free path6
• This cone narrows with increasing primary energy. 

The flux of each secondary radiation with a broad energy distribution is integrated 

numerically to obtain the total ion fluence by using equation (2.18). These total ion 

fluences are then compared for different materials as discussed in section 3 .3 .1. 

A heavy-ion transport code including a database31 has been used. This code has 

been used for the ion beam applications described here. A Green's function technique 

obtains an analytic solution ofthe heavy-ion transport equations, equation (2.42). A 

fragmenting iron ion produces hundreds of isotopes as a result of its nuclear reactions. 

These isotopes are represented in the solution of the transport problem. Only a hundred 

or so such isotopes contribute to the solution in a significant way. A reduced set of 

isotopes is selected to minimize the computational burden, but that introduces some error 

in the final result. A determination ofthe number of isotopes for an adequate laboratory 

beam simulation is required . The atomic weight taken as the nearest integral value and 

the charge associated with each field function are truncated to the nearest isotope using a 

weighted square-distance method. A minimum list of 122 isotopes is required for an 

adequate representation of the mass and charge distributions of the secondary radiation 
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fields. A reduced set of 80 isotopes is sufficient to represent the charge distribution alone 

and represents reasonably well the linear energy transfer properties for an iron beam. The 

resulting 122-isotope list should be adequate for a laboratory ion beam with charges equal 

to or less than 26, because iron fragmentation produces nearly every isotope lighter than 

iron (Z = 26). This is discussed in section 3.3.2. 
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3.2 Potential Space Construction Materials 

The calculation is extended herein to complex polymer molecular structures that 

are hydrogen-containing materials and which may be fabricated and supplied as shield 

material. The model48 oftetraglycidyl4,4' diamino diphenyl methane (TG 4,4' DDM) 

epoxy cured with diamino diphenyl sulfone (DDS), is among those considered. Figure 2 

shows the epoxy structure. The dashed line encloses the repeat cured unit. Table 1 

contains the values of the atomic parameters for the pure epoxy tested. The density of the 

epoxy is 1.32 g/cm3
• 

For more specific extended-duration lunar missions, a lunar-soil model by Nealy, 

Wilson, and Townsend49 is used to predict the fluxes of energetic galactic cosmic rays in 

the internal environment after passing through a thick lunar regolith shield. In the case of 

a lunar-soil model, the five most abundant elements, comprising up to 99.9 percent of the 

regolith samples, are chosen. The lunar soil composition used is that for the measured 

abundances of Si02, Al20 3, FeO, and MgO and has the elemental percentage given by 

Nealy, Wilson, and Townsend49
• Table 2 contains the values of the atomic parameters for 

lunar regolith. The average soil mass density, 1.5 g/cm3
, is used based on the density 

range of0.8 to 2.15 g/cm3 reported before. Table 3 contains the values ofthe atomic 

parameters for lunar regolith/epoxy composites. 

49 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

_______ .,_,_ ______ ---

50 

Figure 2. Tetraglycidyl 4,4' diamino diphenyl methane epoxy cured with 

diamino diphenyl sulfone 
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Table 1. Values of atomic parameters for the pure epoxy, p=1.32 g/cm3 

Parameters Hydrogen Carbon Nitrogen Oxygen Sulfur 

Atomic 1 6 7 8 16 
Number, Z 

Mass 1 12 14 16 32 
Number, A 

Number of 42 37 4 6 1 
Atoms in Each 
Repeat Unit 

Weight in 42 444 56 96 32 
Each Repeat 
Unit 

Atom Density, 3.77 3.32 0.36 0.54 0.09 
1022 atoms/gm 
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Table 2. Values of atomic parameters for the lunar regolith, p=l.S g/cm3 

Parameters Oxygen Silicon Aluminum Iron Magnesium 

Atomic 8 14 13 26 12 
Number,Z 

Mass 16 28 27 56 24 
Number, A 

Normalized 44.7% 24.5% 9.3% 15.4% 6.0% 
Weight 
Percentage 
1021 23.1 4.15 1.67 0.66 1.38 
Atoms/gm 
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Table 3. Values of atomic parameters for the lunar regolith/epoxy composites, where 

Atom Density, 1021 Atoms/gm 

Atomic Mass 
Number, Number, Wt=0.1 Epoxy, Wt=0.2 Epoxy, 

Elements z A Pc=1.48 g/cm3 Pc=1.46 g/cm3 

H 1 1 3.78 7.53 

c 6 12 3.32 6.65 

N 7 14 0.36 0.72 

0 8 16 0.54 19.57 

s 16 32 0.09 0.18 

Si 14 28 3.74 3.32 

AI 13 27 1.51 1.34 

Fe 26 56 0.59 0.53 

Mg 12 24 1.24 1.1 

-----· ---- ·-·----·-----



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

54 

Several polymers were tested with the calculations to gauge their effectiveness as 

shield materials: an aromatic polyether, polysulfone P170050 from the Union Carbide 

Corporation, which is an amorphous, rigid, tough thermoplastic with a high second-order 

transition (T g) and noteworthy electrical properties; a commercial polyetherimide, Ultem51 

from the G:eneral Electric Company, which has an unusually high melting point and 

possess outstanding thermal stability, but is intractable; and a polypyromellitimide, 

Kapton52
, a thermoset from the du Pont Corporation which has excellent thermal, 

oxidative, and hydrolytic stability. Films ofKapton with a thickness of2.0 mils have 

shown outstanding resistance to irradiation from high energy electrons and from thermal 

neutrons52
• The repeat units of these polymers are shown in figure 3. Polyethylene, with 

its high hydrogen density, and polytetrafluoroethylene, with heavier fluorine atoms and no 

hydrogen, were tested. Table 4 contains the values of the atomic parameters for the pure 

polymers. 

The addition of boron powder to a polymer allows the material to absorb 

low-energy neutrons53
• This occurs because neutrons, when reduced to very low energies, 

have a high probability of reacting with a nucleus in a process called neutron capture. 

Neutron thermalization is a natural consequence of movement through hydrogen bearing 

polymers. Low energy neutrons react particularly well with a stable isotope of boron, 1DJ3, 

which constitutes 19.6 percent of the naturally-occurring element. The products of the 

reaction, 4He and 7Li, are not radioactive. Thus, various weight fractions of boron in films 

of some of these polymers were tested. Table 5 contains the values of the atomic 

------- --------
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parameters for the polymer/boron mixtures. The density of natural boron powder was 

taken as 2.'59 g/cm3
• 
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(a) Polyctlwrimido. 

(h) Polysulfone. 

(c) Polyimidn. 

Figure 3. The repeat units ofthree polymers studied 
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Table 4. Values of atomic parameters for some polymers 

Atomic Mass 
Number, Number, Atom Density, Density, 

Elements z A I022 Atoms/gm g/cm3 

Polyetherimide H I I 2.44 
c 6 I2 3.76 
N 7 I4 0.203 1.27 
0 8 16 0.6I 

Polysulfone H I 1 3.0 
c 6 12 3.68 
0 8 I6 0.545 1.24 
s 16 32 0.136 

Polyimide H 1 1 1.58 
c 6 12 3.47 
N 7 14 0.315 1.42 
0 8 I6 0.788 

Polyethylene H 1 1 8.60 
c 6 12 4.30 .92 

Poly(tetrafluoro- c 6 I2 1.20 
ethylene) F 9 I9 2.40 2.17 

----------
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Table 5. Values of atomic parameters for various boron containing polymers 

Atom Density, 1021 Atoms/gm 

Atomic Mass 
No., No., 5% 10% 15% 20% 

Elements z A B B B B 

Polyetherimide H 1 1 23.2 22.0 20.7 19.5 
c 6 12 35.8 33.8 32.0 30.1 
N 7 14 1.93 1.83 1.73 1.63 
0 8 16 5.80 5.49 5.18 4.88 
B 5 11 2.23 4.46 6.69 8.93 
B 5 10 0.558 1.11 1.67 2.23 

Polysulfone H 1 1 28.6 27.0 25.5 24.1 
c 6 12 35.0 33.1 31.3 29.6 
0 8 16 5.19 4.90 4.63 4.38 
s 16 32 1.30 1.22 1.16 1.10 
B 5 11 2.11 4.46 6.66 8.76 
B 5 10 0.527 1.12 1.66 2.20 

Polyimide H 1 1 15.0 14.2 13.4 12.6 
c 6 12 33.0 31.2 29.4 27.7 
N 7 14 3.0 2.84 2.67 2.52 
0 8 16 7.52 7.10 6.69 6.31 
B 5 11 2.15 4.46 6.82 8.9 
B 5 10 0.538 1.12 1.7 2.23 

---------------····-·-----· 
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3.3 Laboratory Ion Beams on Shield Materials 

3.3 .1 Total Ion Fluence Comparisons 

Two ion beams were used in the calculations: 56Fe at 605 MeV/amu and 2'Ne at 

425 MeV/amu. These beams and energies were chosen because they matched 

experimental data taken at the Lawrence Berkeley Laboratory (Thibeault, S. A., private 

communication). An initial range of the primary ion beam, to which the primary ion of 

initial energy can be extended from the boundary, for a material with known density is 

calculated by using the Bethe formula34 where the linear energy transfer is quite accurate 

at high energy. The initial range of penetration of the 605 MeV/amu 56Fe beam in lunar 

regolith of density 1.5 g/cm3 is approximately 10 em (15.8 g/cm2
). The calculations show 

that lighter fragments of the incident 56Fe nuclei with energies lower than 605 MeV/amu 

are predicted to be in high abundance for a lunar regolith brick of thickness 16 g/cm2 

which is slightly larger than the range of penetration. Figure 4 shows the distribution of 

these fragments as they appear at the back of the shield. Note that the addition of 

hydrogen-bearing epoxy to the regolith brick increases the protection. Figure 5 shows 

that lighter particles with energies lower than 605 MeV/amu also are predicted to be 

present for a lunar regolith brick of thickness 18 g/cm2
• These results demonstrate that 

most of these particles are secondaries from the nuclear interaction processes. Most 
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conspicuous is that the maximum contribution comes from a broad range of particles 

above Z = 3 (Li). 

62 

The calculated initial range of the primary beams of56Fe at 605 MeV/amu and 2'Ne 

at 425 MeV/amu for each polymer are shown in table 6. Table 6 also shows the effects of 

adding boron to three of the polymers. From these calculated initial ranges, a thickness of 

10 g/cm2 is considered to be a thin target and 18 g/cm2 is a thick target for a primary 56Fe 

beam at 605 MeV/amu, while 18 g/cm2 and 20 g/cm2 are considered to be a thin and a 

thick targets respectively for a primary 2'Ne beam at 425 MeV/amu. The fluences of 

identified projectile fragment nuclei are compared for thick targets of the primary 56Fe 

beam at 605MeV/amu, and the primary 2'Ne beam at 425 MeV/amu where the thicknesses 

are slightly larger than the initial ranges. 

The mean free paths for nuclear reaction and the nature of the reaction products 

may be determined from nuclear cross section data. Energetic incident particles have 

short mean free paths for nuclear reaction in hydrogen targets, because a hydrogenous 

material has larger nuclear absorption cross sections per unit mass than a non-hydrogen 

material47
• The charge removal from a projectile by fragmentation with hydrogen targets 

is smaller than that with non-hydrogen targets54
• Due to the greater hydrogen content of 

polyethylene, the charge difference of projectile by fragmentation in polyethylene is 

smaller than that in polytetrafluoroethylene and other polymers. Thin polyethylene 

enhances the high Z fragment when it is compared with the other thin polymers. The 
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Table 6. The calculated initial range for some polymers and polymers with varying weight 

percentages ofboron. 

Initial Range of Initial Range of 
56Fe Beam 2o.N"e Beam 

p (g/cm3
) at 605 MeV/amu, at 425 MeV/amu, 

(g/cm2
) (g/cm~ 

Pure Polyetherimide 1.27 13.8 19.2 
5%B 1.30 13.9 19.3 
10%B 1.33 14.0 19.5 
15%B 1.36 14.0 19.6 
20%B 1.40 14.1 19.7 

Pure Polysulfone 1.24 13.7 19.1 
5%B 1.27 13.8 19.2 

10%B 1.30 13.9 19.3 
15%B 1.34 14.0 19.5 
20%B 1.37 14.0 19.5 

Pure Polyimide 1.42 14.1 19.6 
5%B 1.45 14.1 19.7 
10%B 1.48 14.2 19.8 
15%B 1.51 14.3 19.9 
20%B 1.54 14.4 20.0 

Polyethylene 0.92 12.2 

Poly(tetrafluoroethylene) 2.17 15.7 
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second and further fragmentation events occur more often in the thicker polyethylene 

shields because of the higher nuclear attenuation rate in polyethylene than in the other 

polymer shields. The charge difference from the second and further collisions greatly 

reduces the fluence ofHZE fragments emitted from the back side of a polyethylene shield. 

The lighter material such as polyethylene enhances the high energy heavy fragment 

fluence relative to polytetrafluoroethylene for thin shields as shown in figure 6 and reduces 

the fluence more efficiently than polytetrafluoroethylene and other polymers for thick 

shields as shown in figure 7. In fact, the succession of curves in figures 6 and 7 are 

governed by the amount of hydrogen per unit mass and polyethylene is the most abundant 

in hydrogen. Study on the effect of shield composition on the LET distribution at several 

depths has already shown that for the radiation distributions observed at solar minima54 

polyethylene is the most effective high-LET degrader at thicknesses greater than 5g/cm2
• 

Here too, polyethylene is the most effective shield material among several polymers at a 

thickness greater than 18 g/cm2 for a 56Fe beam at 605 MeV/amu. 

The addition of boron powder to a polymeric material causes no degradation in 

glass transition temperature or Young's modulus53
• The calculated fluence for a 

polyetherirhide containing various weight fractions ofboron is shown in figure 8 for a 56Fe 

beam at 605 MeV/amu, and in figure 9 for a 2'Ne beam at 425 MeV/amu. These results 

show no significant difference for various weight fractions ofboron. For thick shields, the 

pure polymer shows slightly better attenuation of fragments of charge greater than 3 than 
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does a mixture containing 20 % boron. As the fraction ofB increases from 5 % to 20 % 

by weight, both the density and the initial range increase because boron has a higher 

atomic number than hydrogen. Similar results are obtained for the polysulfone and the 

polyimide. Hence, pure polymers are expected to attenuate fragments of charge greater 

than 3 slightly better than materials containing various fractions of boron. The laboratory 

code with perturbation theory does not include light fragments of Z < 3 in any realistic 

way, because a greater knowledge of nuclear fragmentation processes and a 

corresponding transport theory are required for these fragments. 
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3.3.2 Effects on Isotope Selection 

The nonperturbative method generates the Green's function for any ion of charge Z 

:S28 that results from the impact of that ion on a material medium, including the secondary 

fragment fields. The atomic weight, taken as the nearest integral value, and charge 

associated with each field function are truncated to the nearest isotope A1, Z1 in the 

isotope table. The truncation minimizes the distance to the nearest isotope using a 

weighted square-distance function 

Dn =(A; -Az)2 +4(Z; -Zz) 2 (3.1) 

where A;, Z; is the isotope produced in the fragmentation event. Because charge is a 

dominating factor for linear energy transfer, the distance is weighted more by charge than 

by mass to give faster convergence in equation (3.1). Clearly, the accuracy in the 

transport result requires the isotope list to contain the main isotopes produced in the 

fragmentation event. The isotopes oflesser importance may be approximated. Initially, 

59 isotopes were selected to represent each nuclear mass value between 1 and 58 based on 

a nuclear stability curve. Such a list was found adequate for transport of galactic cosmic 

rays using the HZETRN code42
•
55

• However, such a representation was inadequate for 

transport of an iron beam using the nonperturbative code GRNTRN31
; thus, more isotopes 

were added to the table. To determine the number of isotopes required for an adequate 

laboratory beam simulation, which has both solution accuracy and practical computation 
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time, the solution convergence was tested with the isotope selection. The output spectra 

of charge and mass with an increased size of isotope table were compared to the result 

with a prior isotope table. When they had significant discrepancy at some charge and/or 

mass, more isotopes were added for the successive tables, while the lesser important 

isotopes, which do not contribute to the output spectra in a significant way, were omitted 

from the tables in order to get the practical computational efficiency. This process of 

selection was continued until the output spectra were converged within an insignificant 

error. 

The total flux of identified projectile fragment nuclei between Hand Fe is found 

for 505 MeV/amu monoenergetic 56Fe beams with a 0.2 percent energy spread for the 

primary beam incident on an epoxy sample with a thickness of 5 glcm2
• The resin selected 

is tetraglycidyl4,4' diaminodiphenylmethane (TG 4,4' DDM) epoxy cured with 

diaminodiphenylsulfone (DDS). A repeat unit of the cured epoxy has a molecular formula 

ofC3.,H42N40 6S and has a density of 1.32 g/cm3
• An epoxy was tested because it is a 

common material which can be fabricated and supplied as a shield medium. The results 

based on tables of 59 and 80 isotopes are shown in figures 10 and 11. The integral output 

spectra for the projectiles and fragments in figure 10 show a somewhat similar charge 

distribution for both 59 and 80 isotopes, but the mass distributions in figure 11 show large 

differences. The SO-isotope table is probably adequate for applications in which charge is 

the dominating factor (e.g., linear energy transfer), but the mass distribution would be 

substantially improved through the use of an expanded isotope list. 
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A modest change to the SO-isotope list was made with the addition of 5 isotopes, 

the results .of which are shown in figure 12. Significant improvement in the mass 

distribution is achieved for A1 < 40, but the result is worse at higher mass numbers. The 

charge distribution was less accurate and the use of a 1 00-isotope list could not adequately 

resolve the convergence problem for the mass distribution as seen in figures 12 and 13. 

The isotope tables were incrementally expanded with continuous improvement in the mass 

distribution, as seen in figures 14 to 17. The final list of 122 isotopes appears to be the 

minimum set required to represent the fragment mass distribution. The charge distribution 

had nearly converged at 80 isotopes and no substantial change in its convergence occurs 

beyond 100 isotopes, as seen in figure 18. 

Although the specific tests were derived for an iron beam on a given epoxy resin, 

the isotope distributions are largely dominated by the nuclear physics of the projectile 

fragments and virtually all elements are produced below the projectile atomic number. 

Thus, similar convergence properties are expected for other shield materials. It should be 

noted that iron is a principal contributor to galactic cosmic ray exposure and the current 

results indicate that the space shield calculations require a larger table than the 59 isotopes 

currently used. 
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3.4 Results and Discussion 

Interaction with structural materials is a recognized means of reducing exposure 

risk from HZE particles in space. A theoretical study was initiated to investigate the 

alteration of space radiations by shield materials in order to prepare an evaluation of risk 

reduction through materials selection. 

It has been shown that light hydrogenous compounds show great promise as a high 

performance shield material. Thus, the effects ofhydrogen-bearing compounds as 

potential space structural components were examined by comparing the total ion tluence 

after passing through the shield. For energetic ion beams a polyethylene target with its 

high hydrogen density is the most effective absorber for thick shields, while a 

polytetrafluoroethylene target with the heavier fluorine atoms appears to be more effective 

for thin shields with respect to the production of secondary radiation. Adding an epoxy to 

bind lunar regolith in a composite enhances its shielding properties from HZE particles. 

The inclusion ofboron in a polymeric material diminishes only slightly the material's 

capacity to absorb HZE particles. Lunar regolith is a less effective shield material for HZE 

particles than the hydrogen-containing polymers studied. Therefore, a material with a high 

percentage of lighter atoms such as hydrogen would be effective for a thick shield while a 

material with a heavier atomic composition might yet prove to be more effective in thin 
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shields for energetic ion beams with respect to the number of secondary particles without 

considering their radiation quality. The effect of each radiation quality is evaluated in 

chapters 4 and 5. Pilot experiments to validate these theoretical results have been 

performed.but data reduction is not yet complete (Thibeault, S. A., private 

communication). 

Computational precision of charge and mass distribution was achieved by 

increasing the size of the isotope table. However, each additional isotope requires 

additional computation time to generate the nonperturbative Green's functions for the 

selected isotope table. An optimal choice of isotope table is needed for both 

computational precision and practical computation time. 

The detailed isotope selections are shown in tables 7 and 8. Figures 17 to 19 show 

that a useful choice is the revised table of 122 isotopes. In figures 17 and 19, the integral 

output spectra converge within 5 percent compared with the 125-isotope list over the 

entire projectile fragment nuclear mass range of 1 to 56. In figure 18, integral output 

spectra are plotted over the charge range of 1 to 26, where the maximum difference 

between successive tests is 2. 7 percent over the entire projectile fragment nuclei range for 

tables with 100 or more isotopes. A similar plot for 80 isotopes (figure 10) gives a 

maximum difference of3.1 percent compared to that for 125 isotopes. Although the 

largest list considered (125 isotopes) may not be fully converged, the error introduced by 
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the 125-isotope list is believed to be much less than 5 percent in mass and 2 percent in 

charge distribution. 
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Improvements in the treatment of the nuclear database are required so that space 

radiation codes will agree even with the sparse experiments that have been carried out so 

far6
• 
27

• The improvement addressed in this section was the determination of a useful 

isotope table to generate the nuclear database that gives both computational precision and 

practical computation time. An iron beam in a cured epoxy was chosen to study the 

effects of isotope list selection on the mass and charge distributions of the transmitted 

fluence computed by nonperturbative methods in the transport of high-charge and 

high-energy ions. A table of 80 isotopes enables the charge versus fluence spectra to 

converge within 3.1 percent; a table of 100 isotopes converges within 2. 7 percent. A table 

of 122 isotopes yields nuclear mass versus fluence spectra that converge within 5 percent. 

These tables also result in practical computation times. Iron is the most abundant massive 

ion in space and the fragmentation event is dominated by the nuclear structure of the 

projectiles; so these results are generally applicable to other materials and ions important 

to the space radiation problem. 
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Table 7. Detailed index for isotopes 59-110 

Number of isotopes 
z 59 80 85 100 108 110 
0 ln ln ln ln ln ln 

1 lH IH lH lH lH lH 
zH zH zH zH zH zH 
3H 3H 3H 3H 3H 3H 

2 3He 3He 3He 3He 3He 3He 
4He 4He 4He 4He 4He 4He 

3 6Li 6Li 6Li 6Li 6Li 6Li 
7Li 7Li 7Li 7Li 7Li 7Li 

.4 7Be 7Be 
8Be 8Be 8Be 8Be 8Be 8Be 
9Be 9Be 9Be 9Be 9Be 9Be 

5 10B 10B 10B 10B lOB 10B 
nB nB nB nB nB nB 

12B 

6 nc nc 
12c 12c 12c 12c 12c 12c 
13c 13c 13c 13c 13c 13c 

7 13N 
14N 14N 14N 14N 14N 14N 
15N 15N 15N 15N 15N 15N 

8 150 150 
160 160 160 160 160 160 
170 170 170 170 170 170 

9 18p 18p 18p 18p 18p 18p 
19p 19p 19p 19p 19p 19p 

.lQ 19Ne 19Ne 
z~e z~e z~e z~e 2~e 2~e 
21Ne 21Ne 21Ne 21Ne 21Ne 21Ne 
22Ne 22Ne 22Ne 22Ne 22Ne 22Ne 

11 22Na 22Na 
23Na 23Na 23Na 23Na 23Na 23Na 

12 23Mg 23Mg 
24Mg 24Mg 24Mg 24Mg 24Mg 24Mg 
25Mg 25Mg 25Mg 25Mg 25Mg 25Mg 
26Mg 26Mg 26Mg 26Mg 26Mg 26Mg 
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Table 7. Continued 

Number of isotopes 
z 59 80 85 100 108 110 
13 26Al 26Al 

27Al 27Al 27Al 27Al 27Al 27Al 
28Al 2sAI 2sAI 2sAI 2sAI 

14 27Si 27Si 
2ssi 28Si 2ssi 2sSi 2sSi 2ssi 

29Si 29Si 29Si 29Si 29Si 
3osi 3oSi 3osi 3oSi 
3tsi 3tsi 3tsi 3tsi 

15 29p 29p 29p 29p 29p 29p 
30p 30p 30p 30p 30p 
31p 31p 31p 31p 3tp 

32p 32p 32p 32p 
33p 33p 33p 33p 
34p 34p 34p 34p 

'16 3os 
3ts 3ts 3ts 3ts 3ts 3ts 
32s 32s 32s 32s 32s 32s 

33s 33s 33s 33s 33s 
34s 34s 34s 34s 34s 

3ss 3ss 3ss Jss 
36s 36s 36s 36s 

37s 37s 37s 

17 33Cl 
34Cl 34Cl 34Cl 34Cl 34Cl 

3scl 3scl 3scl 3scl 3sCI 3scl 
36Cl 36Cl 36Cl 36Cl 36Cl 
37Cl 37Cl 37Cl 37Cl 37Cl 

3scl 3scl 3scl 3sCI 
39Cl 39Cl 39Cl 

18 34Ar 
36Ar 36Ar 36Ar 36Ar 36Ar 
38Ar 38Ar 38Ar 38Ar 38Ar 

39Ar 39Ar 39Ar 39Ar 39Ar 
40Ar 40Ar 40Ar 40Ar 40Ar 

41Ar 41Ar 41Ar 41Ar 
42Ar 42Ar 42Ar 
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Table 7. Continued 

Number of isotopes 
z 59 80 85 100 108 110 
19 37K 37K 37K 37K 37K 37K 

39K 39K 39K 39K 39K 39K 
4oK 4oK 4oK 4oK 4~ 

4tK 4tK 4tK 4tK 4tK 
42K 42K 42K 42K 
43K 43K 43K 43K 

20 4oca 4oca 4oca 4oca 4oca 4oca 
4tca 4tca 4tca 4tca 4tca 4tca 
42Ca 42Ca 42Ca 42Ca 42Ca 42Ca 

43Ca 43Ca 43Ca 43Ca 43Ca 
44Ca 44Ca 44Ca 44Ca 
4sca 4sca 4sca 4sca 

21 43Sc 43Sc 43Sc 43Sc 43Sc 
44Sc 44Sc 44Sc 44Sc 
4SSc 4ssc 4ssc 4SSc 4ssc 
46Sc 46Sc 46Sc 46Sc 46Sc 

47Sc 47Sc 47Sc 47Sc 
4ssc 4ssc 4ssc 4ssc 

22 44Ti 44Ti 44Ti 44Ti 44Ti 
4sTi 4sTi 4sTi 4sTi 4sTi 
4~i 4~i 4~i 4~i 4~i 
47Ti 47Ti 47Ti 47Ti 47Ti 47Ti 

4sTi 4sTi 4sTi 4sTi 4sTi 
49Ti 49Ti 49Ti 49Ti 49Ti 

s~i s~i s~i s~i 

23 4sv 4sv 4sv 4sv 4sv 
49v 49v 49v 49v 49v 

sov sov sov sov sov 
stv stv stv stv stv 
s2v s2v s2v s2v s2v 

24 socr socr socr socr socr 
stcr stcr stcr stcr stcr 
S2Cr 52Cr S2Cr s2cr S2Cr s2cr 

s3cr s3cr s3cr s3Cr s3Cr 
s4cr s4cr s4cr 54Cr 
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Table 7. Concluded 

Number of isotopes 
z 59 80 85 100 108 110 

25 s3Mn s3Mn s3Mn s3Mn s3Mn 
S4Mn s4Mn s4Mn S4Mn 54Mn S4Mn 

ssMn ssMn ssMn ssMn ssMn 

26 ssFe ssFe ssFe ssFe ssFe ssFe 
s6Fe s6Fe s6Fe s6Fe s6Fe s6Fe 

27 s7co s7co s7co s7co s7co s7Co 

'28 ssNi SSNi SSNi SSNi SSNi SSNi 
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Table 8. Detailed index for isotopes 113-125 

Number of isotopes 
z 113 116 119 122 125 122* 
0 tn tn tn tn tn tn 

1 IH IH IH IH IH IH 
2H 2H 2H 2H 2H 2H 
3H 3H 3H 3H 3H 3H 

2 3He 3He 3He 3He 3He 3He 
4He 4He 4He 4He 4He 4He 

3 6Li 6Li 6Li 6Li 6Li 6Li 
7Li 7Li 7Li 7Li 7Li 7Li 

4 7Be 7Be 7Be 7Be 7Be 7Be 
8Be 8Be 8Be 8Be 8Be 8Be 
9Be 9Be 9Be 9Be 9Be 9Be 

5 8B 
9B 9B 9B 9B 9B 9B 
toB toB toB toB toB JOB 

liB liB liB liB liB liB 
12B 12B 12B 12B 12B 12B 

·6 lie lie lie lie ne lie 
12e 12e 12e 12e 12e 12e 
ne t3e ne 13e ne t3e 

7 nN t3N nN t3N 13N nN 
t4N t4N t4N t4N t4N t4N 
t5N t5N t5N t5N t5N t5N 

t6N t6N t6N t6N 

8 150 150 150 150 150 150 
160 160 160 160 160 160 
170 170 170 170 170 170 
180 180 180 180 180 180 

190 190 190 190 190 

9 11p 17p 17p 17p 
18p 18p 18p 18p 18p 18p 
19p 19p 19p 19p 19p 19p 

20p 20p 

*Resulting 122-isotope list that is adequate for ion beams. 
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Table 8. Continued 

Number of isotopes 
z 113 116 119 122 125 122* 
10 t9Ne t9Ne t9Ne t9Ne t9Ne t9Ne 

2<Ne 2<Ne 2<Ne 2<Ne 2<Ne 2<Ne 
2tNe 2tNe 2tNe 2tNe 2tNe 2tNe 
22Ne 22Ne 22Ne zzNe 22Ne 22Ne 

23Ne 23Ne 23Ne 

11 22Na 22Na 22Na 22Na 22Na 22Na 
23Na 23Na 23Na 23Na 23Na 23Na 

24Na 24Na 24Na 

12 22Mg 22Mg 
23Mg 23Mg 23Mg 23Mg 23Mg 23Mg 
24Mg 24Mg 24Mg 24Mg 24Mg 24Mg 
2sMg 2sMg 2sMg 2sMg 2sMg 2sMg 
26Mg 26Mg 26Mg 26Mg 26Mg 26Mg 
21Mg 21Mg 21Mg 21Mg 21Mg 21Mg 

zsMg 2sMg 2sMg zsMg 

13 2sA1 zsA1 
26Al 26Al 26Al 26Al 26Al 26Al 
27Al 27Al 27Al 27Al 27Al 27Al 
2sA1 2sA1 2sA1 2sA1 zsAl 2sA1 

29Al 29Al 29Al 29Al 

14 27Si 27Si 27Si 27Si 27Si 27Si 
zssi zssi 2ssi 2ssi 2ssi 2ssi 
29Si 29Si 29Si 29Si 29Si 29Si 
3oSi 3oSi 3oSi 3oSi 3oSi 3oSi 
3tsi 3tsi 3tsi 3tsi 3tsi 3tsi 

15 29p 29p 29p 29p 29p 29p 
30p 30p 30p 30p 30p 30p 
31p 3tp 3tp 31p 3tp 31p 
32p 32p 32p 32p 32p 32p 
33p 33p 33p 33p 33p 33p 
34p 34p 34p 34p 34p 34p 

*Resulting 122-isotope list that is adequate for ion beams. 
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Table 8. Continued 

Number of isotopes 
z 113 116 119 122 125 122* 

16 318 318 318 318 318 318 
328 328 328 328 328 328 
338 338 338 338 338 338 
348 348 348 348 348 348 
358 358 358 358 358 358 
368 368 368 368 368 368 
378 378 378 378 378 378 

388 

17 34Cl 34CI 34CI 34CI 34CI 34CI 
35CI 35CI 35Cl 35CI 35CI 35CI 
36CI 36CI 36CI 36CI 36CI 36CI 
37CI 37CI 37Cl 37Cl 37CI 37Cl 
Jscl JsCI Jscl Jscl Jscl JsCI 
39CI 39CI 39Cl 39CI 39CI 39CI 

18 36Ar 36Ar 36Ar 36Ar 36Ar 36Ar 
37Ar 37Ar 

38Ar 38Ar 38Ar 38Ar 38Ar 38Ar 
39Ar 39Ar 39Ar 39Ar 39Ar 39Ar 
40Ar 40Ar 40Ar 40Ar 40Ar 40Ar 
41Ar 41Ar 41Ar 41Ar 41Ar 41Ar 
42Ar 42Ar 42Ar 42Ar 42Ar 42Ar 

19 37K 37K 37K 37K 37K 37K 
39K 39K 39K 39K 39K 39K 
4oK 4oK 4oK 4oK 4oK 4oK 
41K 41K 41K 41K 41K 41K 
42K 42K 42K 42K 42K 42K 
43K 43K 43K 43K 43K 43K 

.20 4oca 4oca 4oca 4oca 4oca 4oca 
41Ca 41Ca 41Ca 41Ca 41Ca 41Ca 
42Ca 42Ca 42Ca 42Ca 42Ca 42Ca 
43Ca 43Ca 43Ca 43Ca 43Ca 43Ca 
44Ca 44Ca 44Ca 44Ca 44Ca 44Ca 
45Ca 45Ca 45Ca 45Ca 45Ca 45Ca 

46Ca 4sca 

*Resulting 122-isotope list that is adequate for ion beams. 
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Table 8. Concluded 

Number of isotopes 
z 113 116 119 122 125 122* 
21 43Sc 43Sc 43Sc 43Sc 43Sc 43Sc 

44Sc 44Sc 44Sc 44Sc 44Sc 44Sc 
4ssc 4SSc 4ssc 4ssc 4ssc 4ssc 
46Sc 46Sc 46Sc 46Sc 46Sc 46Sc 
47Sc 47Sc 47Sc 47Sc 47Sc 47Sc 
4ssc 4ssc 4ssc 4ssc 4ssc 4ssc 

22 44Ti 44Ti 44Ti 44Ti 44Ti 44Ti 
4sTi 4sTi 4sTi 4sTi 4sTi 4sTi 
46yi 46yj 46yj 46yi 46yj 46yj 
47Ti 47Ti 47Ti 47Ti 47Ti 47Ti 
4sTi 4sTi 4sTi 4sTi 4sTi 4sTi 
49Ti 49Ti 49Ti 49Ti 49Ti 49Ti 
soyi soyi soyi soyi soyi soyi 

23 4Sy 4Sy 4Sy 4Sy 4Sy 4sy 
49y 49y 49y 49y 49y 49y 
soy soy soy soy soy soy 
sty sty sty sty Sty Sty 
S2y S2y S2y S2y 52y S2y 

24 socr socr socr socr socr socr 
stcr stcr stcr s•cr s•cr s•cr 
s2cr s2cr S2Cr S2Cr S2Cr s2cr 
S3Cr S3Cr S3Cr S3Cr S3Cr s3cr 
S4Cr s4Cr S4Cr S4Cr S4Cr s4Cr 

25 s3Mn s3Mn s3Mn s3Mn s3Mn S3Mn 
S4Mn s4Mn s4Mn S4Mn S4Mn S4Mn 
ssMn ssMn ssMn ssMn ssMn ssMn 

26 ssFe ssFe ssFe ssFe ssFe ssFe 
S6Fe s6Fe S6Fe s6Fe s6Fe s6Fe 

27 s?Co s?co s?co s?co s?Co s?co 

28 ssNi ssNi ssNi ssNi ssNi ssNi 

*Resulting 122-isotope list that is adequate for ion beams. 
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Figure 19. Mass distribution of 505 MeV/amu iron beams in 5 g/cm2 of epoxy 

for revised table with 122 isotopes 
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CHAPTER 4. APPLICATION TO STATIC RANDOM ACCESS MEMORY DEVICES 

IN HZE EXPOSURE 

4.1 Introduction 

Single event upsets (SEUs), or soft errors, are mainly logic upset errors due to a 

spurious charge produced by the transit of a single ionizing particle in static random access 

memory (SRAM) in high-density integrated circuitry. Thus, SEUs are a serious 

consequence of galactic cosmic radiation (GCR) for missions involving miniature 

spacecraft. The SEU error rate increases with the packing density of integrated circuits 

and affects- the costs for mission plans and for future designs in the small spacecraft 

program because of the SEU-hardening problem. The accurate prediction of SEU rates 

would minimize parts and device test requirements to resolve radiation-related problems. 

With the Langley Research Center cosmic ray code (HZETRN18
), the transmitted galactic 

cosmic ray environment at the 1977 solar minimum has been accurately modeled for 

integral LET flux of different ions with the same LET and for those of each charge group 

behind various thicknesses of different shield materials. The current status of shielding 

technology and its impact on the SRAM upset rate are compared with dosimetric 

calculations because SEUs occur through the physical energy transfer process with device 

materials during the transit of a single ionizing particle through the chip. The specific 

energy transfer depends on the radiation type and the reactions induced in the device 
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material. The resultant LET spectra from the HZETRN18 are coupled with a measured 

upset cross section versus LET curve56 to calculate the SEU error rate for IMS1601EPI 

SRAM devices. 

95 

The IMS 160 1EPI device used in the space shuttle computer is an epitaxial 

substrate version made by Inmos Corp. and a non-radiation hardened 64kx1 SRAM built 

using a conventional four-transistor cell approach and 1.3 micron complementary metal 

oxide semiconductor (CMOS) technology6
• This device has been used in the shuttle 

SRAM, because it was not susceptible to latchup for LET values up to 100 MeV cm2/mg 

when irradiated with heavy ions57
• In CMOS/epi devices, the sensitive region for a 

complementary transistor is taken to be the silicon for a conservative calculation58
. The 

SEU error rate prediction is calculated by a modified path-length distribution method58
• 

This SEU prediction methodology has been compared with actual upset rate data from 

space shuttle flights and has proven to be capable of accurately predicting the upset rate56
• 

The upset rate behind shield materials relative to that in free space gives the 

estimation of upset rate reduction and also indicates the shield performance of materials 

for CMOS/epi SRAM devices. The shielding analysis of the SRAM devices is done below 

by comparison of upset rate contributions from each atomic charge group behind various 

thickness of shield materials. 
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4.2 Energy Absorption on SRAM Devices 

The interaction data for ionization and nuclear collisions were combined in the 

Boltzmann equation with the 1977 solar minimum incident galactic cosmic ray spectrum59 

to evaluate the transmitted radiation field passing through various target materials at 

different thickness. The physical energy transferred to the silicon of the device is termed 

its dose. The specific energy transfer depends on both the type and intensity of the 

transmitted radiation environment which induces reactions in the silicon ofthe device. 

Contributions to the dose come from propagating neutrons, protons, alpha particles, and 

heavy ions (HZE). These particles are target nuclear fragments, primary particles, or their 

secondaries. Nuclear recoil nuclei (e.g., AI, Mg) in the silicon of the device also 

contribute .to the dose. All secondary particles from HZE interactions are presently 

assumed to be produced with a velocity equal to that ofthe incident particle. The 

assumption for neutrons underestimates the exposure, because the lateral dispersion is 

strongly affected, particularly by the low energy neutrons18
• Although the result is 

underestimated, the doses relative to that in free space are useful for estimating relative 

shield effectiveness to compare different materials. 

The absorbed dose in a SRAM device behind different thickness relative to that in 

free space is shown in figure 20 for several shield materials. In this figure, the dose behind 
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the target materials with large mass, such as lead, copper, iron, and aluminum, exceeds the 

dose absorbed in free space at all thicknesses up to 30 glcm2
• Thus, the energy absorbed 

by microelectronics is not reduced by a spacecraft shield. This is due to the multitude of 

secondary particles produced in the projectile breakup by the shield nuclei. Dose is a 

slowly decreasing function of shield thickness for shield materials with light mass, such as 

polyethylene, lithium hydride, and liquid hydrogen. This is a result of many processes of 

secondary particle production whereby the heavier GCR nuclei are broken into nucleons 

and lighter nuclear fragments by nuclear and Coulombic interactions with the shield 

material. The absorbed dose, D, due to energy deposition at a given location, x, by all 

particles is given by 

D(x) = l;J; Sj(E)!pj(x,E)dE. 
J 

(4.1) 

The absorbed dose does not effectively represent the harmful effects on microelectronics, 

because each LET component of a given particle does not cause an SEU. Therefore, a 

useful LE~ spectrum is defined for estimating of the SEU error rate. The relative SEU 

error rate is compared below for various shield materials. 

------ ----------·-------·--· --- ·----------
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Figure 20. Attenuation of absorbed dose on SRAM behind several shield materials 
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4.3 SEU Rate Prediction Methodology 

To cause an SEU error, the incident particle must deposit enough ionization 

energy in the node-sensitive neighborhood60 of the material to produce the required 

amount of SEU-inducing charge, Q.. This means that the particular incident particle must 

possess sufficient stopping power in the semiconductor material to liberate the critical 

charge required for an SEU error. For the cosmic ray particles and semiconductors of 

interest, LET is usually an adequate approximation for stopping power. LET for an ion is 

its rate of energy loss in a semiconductor. This depends on its Z, A, and energy, and on 

the material properties of the device. Ions with the same LET are assumed to have the 

same SEU effect. The energy deposition is commonly expressed in terms ofthe effective 

LET, Lcrr, which is the LET normal to the device face. By assuming that the device is a 

thin parallelepiped, a particle normally incident (9=0) on the device would have had to 

give the energy actually deposited, so that all particles pass through the same depth, the 

minimum beam ion track length through the device (the device thickness). As the device 

normal is rotated an angle e from the beam direction, the track length is increased for the 

beam ion and the effective LET is increased as Lcrr = L I cos S, where L is a particle LET. 

Since the particle flux is isotropic at the device, the path-length distribution function58
, 

which is the probability distribution of all possible track chord lengths in the parallelepiped 

sensitive region, is a function of its dimensions. 
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The measured upset cross-section represents an upset susceptibility for all particles 

of a given effective LET. Typically a part is exposed to higher angles of incidence (9) to 

increase the effective LET. Then, a higher LET particle is chosen at normal incidence 

(9=0) to further increase the LET and so on56
• The experimental SEU cross section versus 

effective LET is a semi-empirical function and regarded as measuring a population of 

device sensitivities, not a distribution of actual cross-sections. The cross-section curve is 

considered as resulting from hits on very many cells that have the same area, with the 

spread of LETs that lead to upset resulting from a distribution of critical charges and a 

distribution of amounts of charge collected. Measurements of heavy ion upset 

cross-sections as a function of effective LET sometimes show discontinuities in the 

cross-section curve for two different ions56
, where the ions have different LETs but the 

same effective LET. These discontinuities can be explained on the basis of geometry 

effects on large thin devices60
• When the sensitive volume, which includes the depletion 

regions of vulnerable junctions, has a thickness (t;) which is not small compared to one of 

the lateral dimensions, the actual projection responsible for upset is reduced by a factor of 

ti sin 9 60
, since ions passing through the edges will not have sufficient energy to upset the 

part. The reduction of the projected area leads to the correction of the measured upset 

cross sections by using the edge effect56 determination of Pk, which is the ratio of sensitive 

volume thickness to width. The value of Pk is estimated based on the device technology6
• 

The corrected sensitivity distribution (cross-section curve), which includes the results of 

simple geometrical effects, appears to be the description of the sensitive volume that leads 

to the variation of charge collection across the sensitive volume60
• The failure of a 
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population of identical components may be described by a statistical distribution. Each 

component can fail independently, and all of the components must function for the device 

not to fail. That is the integral Weibull distribution, which is appropriate to describe upset 

cross-section measurements60
• The maximum values of limiting cross-section correspond 

to the expected sensitive area for the entire chip. 

Another LET parameter, important with respect to SEU accelerator and other 

heavy ion source tests, is the onset threshold LET, L1h, and is defined as the minimum LET 

for which ~n SEU is assumed to occur. The onset threshold only characterizes the most 

sensitive cell hit in its most sensitive region. The cross-section curve is broken up into a 

number of steps in order to more accurately represent several sensitive volumes60
, each 

with different upset thresholds (L1h;) and cross-sections ( crY6
• At a particular LET step 

there are a few bits newly able to upset. Since the generated charge is directly 

proportional to the path through the sensitive volume, it is equal to the product of the 

LET of the ion and the effective chord58
• The SEU error rate56 is computed using the 

upset rate of individual sensitive regions summed over the integral distribution of 

sensitivities with the knowledge of the SEU cross section and the incident cosmic ray flux. 

In the computer memory device, upsets may be caused by two distinct processes56
• 

One process is called direct ionization in which the projectile fragment ions of galactic 

cosmic rays behind the shield material deposit energy directly in the sensitive volume by 

ionization. The other process is light-ion secondary upsets. In this process energy is 
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deposited by heavy ions that are produced in the device as fragments resulting from the 

interactions called spallation reaction between light ions and silicon nuclei of a SRAM 

device. These two processes are treated separately in the following sections. 
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4.3.1 Direct Ionization 

The SEU cross-section was measured by T. Scott as a function of effective LET at 

the Berkeley 88"-Cyclotron for seven IM:S1601EPI devices and referenced by O'Neill and 

Badhwar6
• The average measured SEU cross-section for heavy ions versus effective 

LET56 are shown in figure 21. It is well known that the upset cross-section is accurately 

represented by the integral Weibull distribution60 (see figure 21) 

cr(L) = 1-exp{-[ (L--::rh) T} for L >Lrh 

cr(L) = 0 for L < Lrh (4.2) 

withL1h=2.75 MeV cm2/mg, W=l40.0, and s=0.95. Since the actual cross-section is not a 

step function but varies with effective LET, the modification takes into account for the 

Weibull distribution cross-section56
• The cross-section is modified by dividing it into 

multiple steps rather than a single upset threshold60
• The average SEU cross-sections for 

heavy ions accurately approximate multiple thresholds and cross-sections for each step56
• 

Another modification takes into account for the sensitive volume thickness of the 

device. The sensitive volume thickness (t) for each step is found from the computed 

geometric parameter, P". The value of P" for the IM:S 1601EPI was determined to be 

about 0.1 based on edge effect measurements and comparison ofpredicted and actual 

upset rates51
• It was reasonably consistent with the 1.3 J..Lm thick device technolow6

• 
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With the assumption of a very thin and square-shaped sensitive volume, the thickness t; is 

found from 

t; =PkJAcr; 

for each step i. 

(4.3) 

A critical charge, Qc, liberated by a flux of particles incident on the integrated 

circuit is the quantity of charge necessary to change a binary "one" to a zero, or 

vice-versa, at a particular storage node. SEU errors are explained as the deposition of Qc 

at a storage node by electrons or holes produced in the track made by the incident particle 

in the device material. In silicon, 3.6 eV ofionization energy is required to produce one 

electron-hole pair (where the electron charge is 1.6xl0-19 coulombs). For an incident 

cosmic ray depositing an amount of energy, E (in MeV), in the device material, the 

resulting charge generated in silicon in picocoulombs (pC) is Q = E I 22.5. A 

corresponding LET of96.6 MeV cm21mg for silicon with a density of2.33 g/cm3 yields I 

pCIJ..Lm (Linear Charge Deposition). The critical charge for upsets to the path (t;) through 

the ilh sensitive volume is the product of L1h; I 96.6 (ilh LCD threshold) and t;. The 

minimum LET that can produce an upset to the ilh sensitive part by passing across it 

diagonally is 

t; 
Lmin, =Lrh1 x-s

max 

where smax = the largest path-length found in the ilh sensitive volume 

= the diagonal of a thin parallelepiped of dimensions a, b, and c 

(4.4) 
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Note that in relation (4.4) and subsequent equations it is assumed that LET is constant 

throughout the volume. The maximum LET is the cutoff LET for the particular LET 

spectrum used, where the cross-section is saturated at a high effective LET with high 

angles of incidence. For the IMS1601EPI, the cross section reaches its asymptotic value 

for anLmax of about 50-100 MeV cm2/mg. 

Sin.ce the particle flux is isotropic at the device, the semiconductor chip will have 

particles passing through it from all directions. The path-length distribution function is the 

probability distribution of all possible track chord lengths in the sensitive region and is a 

function of its dimension. The path-length probability density, D(s;(L)), depends on the 

shape of the sensitive region of the part. s;(L) is the path-length for which a particle of 

LET, L, can deposit enough energy within the sensitive volume to cause an upset. This is 

related to the ion stopping power by 

Lrh1 s;(L)=yxt;. (4.5) 

Analytical forms for D(s;(L)) for a thin parallelepiped of dimensions a, b, and c have been 

published58
• The modified path-length distribution is used to calculate the error rate56

• 

The direct deposition SEU rate per device is the sum of the SEU rate of each step and is 

given b~6 

SEU rate (direct deposition)= 1t f. {A;Lrh,t; J~m~ D[s;(L)]/(L)L-2dL} 
z=l mm, 

(4.6) 

where i is the step index, Lrh, is the effective LET threshold for the ilh step in MeV 

cm2/mg, A; is the surface area of the ilh sensitive volume, D(s;(L)) is a modified differential 

path length distribution for a square and very thin sensitive volume, and I(L) is the 

radiation environment LET spectrum determined by the HZETRN code18 (figure 22). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

··-··-··· -·----··--·-··-------- ······---·-·····-··-- ... -· ····-·--··-···-···-· .. ·····-··-- ······--- ------

-1-w 10 & 

_j 

"""' ........__, 

!& 10 4 

Free space 
AI 5 g/cm2 

2 
AI 10 g/cm 

103~~~~~~-r~~~-,-~~~-~~~m 

1 10 10 2 10 3 10 4 

LET 1n Si, MeV/cm 

Figure 22. LET -spectra for annual GCR integral flux in free space and behind 

different thicknesses of aluminum shield at the 1977 solar minimum 

107 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

·--------·-··--·-----·--.. - '"" 

4.3.2 Light-Ion Secondaries 

Fast neutrons and protons are produced when galactic cosmic rays pass through a 

shield material. These particles can produce energetic reaction fragment ions which can 

cause an SEU indirectly. The reaction products in silicon include ions of sufficient energy 

and mass number, such as magnesium and aluminum, that can cause an SEU. Alpha 

particle-induced SEU errors also appear in integrated circuits of high packing density and 

low powered spacecraft if upset threshold decreases when power supply voltage becomes 

low. A single alpha particle can ionize enough silicon atoms to produce about 3 million 

electron hole pairs within a circuit element to create a charge sufficient to cause an upset. 

The measured SEU cross-section represents an upset susceptibility for protons of a 

given energf6
• The differential SEU cross-section versus energy is calculated analytically 

by the Weibull distribution based on Harvard cyclotron tests for a proton beam and is 

given b~6 

CJp(E) = 1-exp{-[ (E-:th) T} 
Gp(E) =0 for E<Eth (4.7) 

withE1h= 30 MeV, W=lOO, and s=2. This is shown in figure 23. With the particle-flux 

energy distribution of light ions (n, p, 2H, 3H, 3He, 4He) at the sensitive volume, the 

integral upset rate due to light-ion secondaries is computed as 
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SEU rate (light ion secondaries) = J~max A 0•4crp(E)J(E)dE. 

J(E) is the differential energy distribution of light ion flux at the sensitive volume in 

109 

(4.8) 

number ofparticles/(cm2-day-MeV/amu), crP(E) is the proton cross-section as a function of 

energy (MeV/amu), A is the mass of each light ion, and Emax. is the highest energy of the 

proton spectrum which is about 500-1000 MeV/amu. 
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4.4 Results and Discussion 

The high-LET radiation components are usually degraded to lower-LET as a result 

of nuclear interactions between projectile and target nuclei and such processes become 

more significant as the particles penetrate further into the shield medium. This is 

illustrated in figure 22 where integral fluxes of all the ions are plotted as a function of LET 

at different depths (0, 5, 10 g/cm2
) of aluminum. When transmitted GCR fluences at the 

1977 solar minimum through 10 g/cm2 of iron are compared with respect to aluminum, the 

iron is the less effective high-LET degrader as shown in figure 24. On the other hand, 

polyethylene is more effective than aluminum. High-LET ions in GCRs are very 

instrumental in causing SEUs as seen in figure 21. Thus, a high-LET degrader such as 

polyethylene can provide better shielding for reducing SEU rates. 

By using the SEU rate prediction methodology6 with the radiation environment 

determined from HZETRN18
, the relative upset rate behind shield materials can be 

compared to that in free space. This is shown in figure 25. This relative upset rate gives 

an estimation of the upset rate reduction achieved by selecting an appropriate shield 

material. It also indicates the shield performance of materials for SRAM devices which 

affects costs both for new engineering design and for testing guidelines. SEU is a 

decreasing function of shield thickness as shown in figure 25. The SEU rate contributions 
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from each atomic charge group emerging from the back side of a shield are shown in 

figures 26 to 29 for four diverse shield materials (lead, aluminum, polyethylene, and liquid 

hydrogen). The shield efficiency results from the rapid attenuation of SEU contributions 

from the HZE components of the radiation environment. In lead, contributions from HZE 

components to the SEU rate are attenuated much more slowly than in the other three 

shield materials. The SEU rates are attenuated by liquid hydrogen for all radiation 

components. The SEU rates for heavier radiation components are attenuated more rapidly 

with shield thickness than for the lighter components. The most efficient shielding is 

provided by liquid hydrogen; however, hydrogen-containing materials such as polymers 

will provide relatively good shielding efficiency for SEU. 
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CHAPTER 5. APPLICATION TO BIOLOGICAL SYSTEM IN HZE EXPOSURE 

5.1 Introduction 

The principal radiation protection issues were the control of early somatic effects 

of radiation exposure and their impact on mission safety in past exploratory manned space 

missions. Early somatic effects are usually seen on whole organs or body systems 

promptly after an acute, high-radiation exposure, and a definite link between the cause and 

the effects can be established14
• It was reasoned by NASA that few, ifany, astronauts 

would make more than one high profile trip to the Moon so that career exposures were of 

secondary importance. In this context, the galactic cosmic ray (GCR) background 

(exposures at rates of 150 to 200 mGy/yr) were not of great concern5
•
6

• Late somatic 

effects such as cancer, which would not be immediately observable and occur according to 

the laws ofprobability, would be the ultimate limiting factor of career exposure limits for 

space workers on long-term mission activity. Such a radical shift in astronaut exposure 

patterns led to a re-evaluation of the importance oflow level GCR background exposures. 

Within a few years ofthe discovery of particles of high charge and energy (HZE) 

as components of the GCR, their unique pattern of energy deposition on the microscopic 

scale raised issues with respect to their effects on living cells12
• Although radiobiological 

knowledge has greatly improved, the risk estimation to the astronaut from such exposures 
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is still quite uncertain61
• Even a crude estimate6

, using the linear energy transfer (LET) 

dependent quality factor, results in exposures as high as 1.2 Sv/yr near solar minimum. 

This of course depends on the shielding and makes a large potential impact on the 

allowable career exposure of a space worker or a deep space explorer. 

120 

Evidence that the usual extrapolation of risk from the y-ray database6
2.

63 is 

inadequate has been provided by several experiments19
"
21

• In those examples, a quality 

factor related to RBE becomes meaningless because at doses comparable to that delivered 

by one particle or a few particles, and for radiation effects that are not manifest for 

low-LET radiation (e.g., X-rays), the RBE becomes infinite. Thus, new methods to 

predict the risk resulting from exposure to GCR radiation must be developed. 

Apart from the issues of the astronaut's self-shielding factors and uncertainty in the 

human response to the HZE particles, some control over the radiation environment to 

which the astronaut is exposed is obtained by shielding. The dose at solar minimum from 

an annual GCR exposure behind a traditional aluminum shield is shown in figure 30. The 

absorbed ~ose increases to a maximum at 3-4 g/cm2 and declines to the free space value at 

about 30 g/cm2
• Clearly, no shielding advantage is found in reducing the energy absorbed 

by the astronaut and, if any protection is provided, it results from changes in the 

microscopic pattern of the energy absorption events44
• 
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Below, the modification of the physical parameters ofthe attenuated GCR 

environment at the 1977 solar minimum in various materials are examined to develop an 

understanding of the qualitative changes in the environmental components as a function of 

shield composition including tissue equivalent shields. In this context, the role of nuclear 

cross sections is important in modifying the local environment and the associated 

microscopic fluctuation in the energy absorption events. The importance of these local 

environmental modifications is assessed on biological systems in terms of conventional 

dosimetry using defined quality factors and a track-structure dependent biological model64
• 

Radiobiology experiments with immortal cell cultures, which can be sustained 

indefinitely, have yielded biological data suitable for estimating GCR exposure effects on 

those specific cell populations, although the human risk associated with such exposure is 

uncertain. The response of the C3H1 OT 1/2 mouse cell cultures64 has been used to 

evaluate shield properties for the biological end points of clonogenic death and neoplastic 

transformation44
• Clonogenic death is closely associated with the early response of 

radiation sickness and neoplastic transformation is related to cancer induction. A cell 

repair kinetics model including track structure effects for the C3H10Tl/2 system64
-

66 

provides a basis for studying shield performance. 

The problem of radiation risk assessment is discussed in the context of 

microdosimetry. Then the shield parameters related to shield performance are examined 

and performance is evaluated on the basis of conventional risk assessment and the 
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C3Hl0Tl/2 cell model. The effects of shield material selection on shield design are 

examined on this basis. 

122 

The importance of hydrogenous materials in modifying the biologically important 

components of ion beams makes these studies also important to the evaluation of the 

therapeutic value of heavy ion beams in medical applications. Indeed, the computational 

procedures used, the quality ofthe nuclear database, and the biological response models 

should be useful in the design of therapeutic procedures. 
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5.2 Microscopic Fluctuations and Biological Response Models 

The response of living tissue to a dose D
1 

with low LET is represented by a 

sensitivity coefficient k
1 

and a quadratic coefficient D0 as 

Dy 
R 1 =k1D1(1+ Do) (5.1) 

where R
1 

is either the risk of inducing a specific end point or the level of severity14
• 
63

• The 

parameter D0 is dose-rate dependent and is on the order of 1.2 Gy for dose rates > 50 

mGy/day14
•
63

• Herein a low dose rate is assumed, so thatD/ may be neglected, and 

(5.2) 

The concept of dose as a physical or chemical insult per unit mass of tissue is a carryover 

from the concepts of pharmacology and assumes that dose is a measure of the effects on 

individual cells67
• Tissue cells are in fact not all equal at low exposures because the energy 

deposits are quantized and energy is deposited in only a fraction of cells. Further, volumes 

within a given cell are not all equally sensitive. In general, absorbed dose, D, is not a good 

measure ofbiological damage because this average quantity can be 

decomposed67 as follows: 

(5.3) 

where Vis the sensitive site volume (unit density), E; is the energy absorbed per site hit 

(referred to as the hit size of the ith event), and NE is the number of exposed sites. At low 
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dose, not all sites are hit, so that the number of sites hit N" is less than the number of sites 

exposed. Only as N" ~ N8 is D meaningful in terms of individual cell response67
• The 

fraction of sites that are hit at low exposure, that is N" < < N E> is 

NH -===O'g<j> 
NE 

(5.4) 

where crg is the site geometric cross section and <1> is the charged-particle fluence within the 

tissue system. In reality, the nuclear cross section can be larger than the geometric cross 

section due to the o-ray diffusion for which the number of site hits is increased by sites hit 

far from the ionizing particles path. The fluence <1> is related to the macroscopic absorbed 

dose, D, and the value ofLET, L, (unrestricted LET) as 

<l>=6.24f (5.5) 

for <1> in particles/J.Jm2
, DinGy, and Lin keV/J.lm. The conversion factor 6.24 is for a 

tissue equivalent material (1Gy = 6.24 keV/J..Lm3
). For y-rays, L

1 
corresponds to the 

secondary electrons generated and has a value of about 0.25 keV/J..Lm. The corresponding 

<!>., is an effective secondary electron fluence that is dependent on the photoabsorption 

coefficient and the y-ray fluence. 

The average hit size is given as 

E=L_§_ 
; NH 

(5.6) 

and is known from basic physical principles and specifications of the site volume V. The 

mean number of hits per exposed site is then 

NH DV (5.7) 
NE = e 
and is related to the number of hit sites assuming Poisson statistics. e is estimated from 

the theory ofXapsos et al.68 for various ion types as shown in figures 31 and 32 for a 1 Gy 
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exposure and a 0.1 Jlm site size corresponding approximately to the width of a single 

chromatin strand and its immediate environment. In figures 31 to 34, contributions from 

fragmenting nuclei of the biological target are ignored. The effect of site size is shown by 

comparing a 0.1 Jlm site size with a 0.5 Jlm site size in figures 33 and 34. Note that the hit 

size and average number ofhits increase with the site size. Also shown in figure 35 are 

the most recently defined quality factors62
• The region ofunit quality factor (L ~ 10 

keV/Jlm) for the 1 Gy exposure shown in figure 35 is characterized by a large fraction of 

sites hit (figures 32 and 34) with a fraction of 1 keV mean hit size (figures 31 and 33). 

The corresponding excess fatal cancer risk to this exposure would be about 3 percent. In 

comparison, the 100 keV/Jlm exposure has a quality factor around 20 to 30 and would 

result in an estimated 60 to 90 percent excess cancer risk. The mean hit size in this case is 

several tens of ke V and a small fraction, less than 1 percent, of the sites are in fact hit. 

The HZE particles show a smaller mean hit size due to their range and B-ray diffusion than 

the smaller ions at the same LET, but there is a corresponding increase in the number of 

sites hit. A further distinction ofHZE exposure is that a clustered group of contiguous 

cells or sites is affected by a single ion passage due to their range and B-ray diffusion69 in 

comparison to smaller ions of the same LET. 

The great variability of the microscopic fluctuations, expressed above as mean hit 

size and fraction of sites hit for various radiation field components, is aptly illustrated in 

figures 31 to 34. Although the meaning of this variability is somewhat represented by the 

quality factor as noted in the figure 35, an added distinctive feature of the HZE exposures 
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is that large clusters of contiguous cells are affected. The radiation response of many of 

the GCR components is not yet understood, but surely the changes wrought by shielding 

materials on these microscopic fluctuations which will serve as the primary means of 

radiation protection and not a decline in the energy absorbed with the addition of shield 

material as shown in figure 3 0. 
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5.2.1 Conventional Risk Assessment 

Excess cancer risks in humans are estimated according to equation ( 5.1) based on 

coefficients derived from X-ray andy-ray exposures. The conventional method of 

extrapolati~g the human database to high-LET exposures is to replace D
1 

in equation (5.1) 

by the dose equivalent H given by 

H=QD (5.8) 

where Q is the LET-dependent quality factor62 shown in figure 35. Equation (5.8) follows 

from analogy with the relative biological effectiveness given for y-ray and ion exposure 

levels D
1 

and D; which result in the same biological end point by 

RBE=Dy 
D; . (5.9) 

The quality factor is a defined function62 chosen to represent trends of measured RBE in 

cell culture, plant, and animal experiments. The RBE values depend on end point, dose, 

dose rate, and quality of the radiation usually represented by LET. It is usually assumed 

that RBE reaches a maximum value denoted by (RBE)M at a sufficiently low dose as 

related to the initial slopes of the response curves of each radiation type14
• 
70

• Furthermore, 

the dose at which (RBE)M is achieved is assumed to be dose rate dependent 66
. The values 

ofRBE from which Q is defined as a function ofLET are largely for high dose rates at the 

0.1 Gy level of exposure for which fission neutrons have Q = 25 corresponding to a y-ray 

exposure of2.5 Gy. RBE values for fission neutrons oflower level of exposure and/or 

lower dose rate are much larger70
, as shown in table 9, and occur for lower exposure and 
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dose rate than were used in deriving Q. Since the achievement of(RBE)M is accelerated at 

low dose rates, the RBE values in table 9 may, in fact, be more appropriate for space 

exposures. This is one source of the rather large uncertainties in space radiation exposure 

risks. The" second source ofuncertainty concerns the response to HZE exposures for 

which little is known. It is postulated that there are possible single ion track effects for 

which y-ray exposures have no analog. One such mechanism was suggested by Todd69 in 

which cells exposed at 0.25 Gy outside the track core have a high probability of being 

transformed, while the dead cells of the track core must be replaced, causing promotion to 

a cancer growth by this one event. The RBE for such effects is undefined (infinite) and 

extrapolation from the human database is not possible. 

The use of an LET -dependent quality factor as related to dose equivalent implies 

additivity of diverse components in estimating risk. Such assumptions may underestimate 

the actual risk as was discussed by Scott72
• However, risks associated with different time 

intervals are not additive, especially if radiation proves to be an effective promotion factor 

in carcinogenic response73
• For low LET particles, substantial repair is often operative 

which results in reduced risk. For high LET exposures, there are possible dose rate 

enhancement effects in which risk is substantially increased at lower dose rates74
• 

The uncertainties in radiation-induced risk have been estimated in the NASA Space 

Radiation Health Program61
• In their estimate, the risk is assumed to be related to the total 

value of dose equivalent. This assumes that the dose response curve is of similar shape for 
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Table 9. (RBE)M for fission neutrons 

Tumor induction 

Life shortening 

Transformation 

Cytogenic studies 

Genetic endpoints in mammalian systems 

Other endpoints 

------ . . ··-·-· ·- . 

Lens opacification 

Micronucleus assay 

Testes weight loss 

-3--200 

15-45 

35-70 

40-50 

10-45 

25-200 

6-60 

5-20 
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each radiation component which at low dose and dose rate is linear. The excess risk, that 

is the added risk due to exposure, is then 

R=k1H=ky(Hx+Hz) (5.10) 

where k
1 

is the sensitivity coefficient, His the dose equivalent in Sv, Hx is the component 

of dose equivalent due to low-LET radiation, and Hz is the dose equivalent due to the 

HZE component of the radiation. A further approximation is made that the uncertainties 

in k
1 

and Hx are negligible in comparison with the uncertainty in Hz. With this, one obtains 

from equation (5.10) 

Mlz 
AR=k1M!::::k1Mlz=k1 Hz Hz=k1UHz, (5.11) 

so that the net effect of the uncertainty in Risto increase the relative risk, which becomes 

R+AR =k1H+k1UHz =k1Hu. (5.12) 

This equation defines an effective dose equivalent, H u• corresponding to the increased risk 

due to uncertainties. If a limit, J., is defined on the basis of excess risk R, then it is 

required that 

R+AR ~J. (5.13) 

where J. is the defined limit of acceptable risk. A safety factor, S, can be defined with 

reference to equation (5.12). LetS be an upper bound on the estimated value of the 

uncertainty in HZE dose equivalent, so that S=nU, where n=1,2 ... corresponds to the 

number of standard deviations required to establish an acceptable safety margin. Then 

equation (5.12) becomes 

R + llR = k1H + k1SH z = k1H s (5.14) 

where the effective dose equivalent, including the safety factor, is given by H5=H+SHz. 

Alternatively, the HZE component in equation (5.10) can be increased as 

(5.15) 
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This formulation suggests the possibility of using the ratio between experimental values of 

RBE as appropriate for GCR exposure and Q as an approximation for 1 +S, so that 
I RBE 

Hz = (1 + S)Hz - -=-Hz . (5.16) . Q 

For example, the measured RBE for life shortening in mice has been reported to be as 

large as 80 for fission neutrons74
, while the estimated value ofQ is on the order of20. 

Thus, an estimate for the value of S would be 3 from equation ( 5 .16) which corresponds 

to an effective dose equivalent 300 percent greater for HZE exposure than would be 

obtained from currently accepted conventional dosimetric analyses. Such a value of300 

percent might be considered reasonable from a radiobiological point of view and may not 

be too restrictive on mission design and operations71
• 

In the present study, the uncertainty is ignored in risk estimates, i.e., S=O and the 

quality factor, Q, is applied in estimating the dose equivalent that is assumed to be linearly 

related to risk. The variation of dose equivalent with shield thickness and composition 

will be one means of estimating shield effectiveness. 

_______________________ , ______ ---
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5.2.2 Track-Structure Repair Model 

Although the use of quality factors may give some indication of the attenuation of 

biologically important components, their use in space protection against HZE particles has 

specifically not been recommended14 and a test biological system is considered below for 

the study ~f shield properties. Ionizing radiation interacts with matter through the 

formation and interaction of radicals called nascent lesions. These highly active chemical 

species may result in structural changes occurring within the DNA which cannot be 

repaired by enzymatic processes. Then, subsequent generations may exhibit new 

characteristics, or the cell may be unable to undergo cell division in which case, clonogenic 

death occurs. 

There are many ways in which the DNA could be changed to cause cell death but 

only a few specific changes are allowed to reach other biological end points. First, those 

lesions are treated which lead to cell death. Kinetic equations64 are written for the time 

development of the cell population n;(t) with i-fold lesions as 

ito = :f CXr1n; - kno 
i=l 

00 

ild = :E CXm1n; 
i=l 

138 

(5.17) 

(5.18) 

(5.19) 
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where the k; are proportional to the charged particle flux of primary and secondary 

radiations, a,1 are the repair rates, <Xm1 are the misrepair rates, and nd is the population of 

misrepaired cells. Conservation of cells within a given cell cycle requires k=k1 + k2 + ... and 

<X;= a,1 + <Xm1 • The ratio a,1aj1 is the kinetic repair efficiency and md is the smallest i for 

which the repair efficiency is zero. 

The k; kinetic coefficients are related to the Katz model75 for the highly repair-

efficient stationary G1 phase cells as 

(5.20) 

(5.21) 

where all other k;'s are taken as zero45
• 
76

• The remaining quantities are all given by Katz as 

D1 = ( 1- ~ )Lc!> (5.22) 

where cj> is the local charged particle flux of primary and secondary radiations, L is their 

corresponding LET, and cr is approximated using the Katz model64
• cr0 is Katz 

"saturatio~" value of the cross section75 as given in table 10. 

The cellular track model of Katz et al_75 attributes biological damage from 

energetic ions to the secondary electrons (B-rays) produced along the ion's path. The 

effects caused by energetic ions are correlated with those ofy-rays by assuming that the 

response in sensitive sites near the ion's path is part of a larger system irradiated with 

y-rays at the same dose. The response due to ion effects is then approximately related to 

they-ray response and the B-ray dose surrounding the ion's path. For a core of the ion 

track with the number of hits m, the inactivation of cells by y rays is assumed to follow a 
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Poisson distribution reflecting the random accumulation of sublethal damage, with a 

radiosensitivity parameter D 0• 

For the inactivation of cells by ions, two models are identified: "ion-kill" which 

corresponds to intratrack effects and "gamma-kill" which corresponds to intertrack 

effects. Here, the ion-kill mode is unique to ions corresponding to single particle 

inactivation of cells described by the cross section <i. The inactivation cross section for a 

sensitive site whose response to radiation is ahistoric is determined as64 

(j = J; 21tt dt (1- e-l5!Do)m (5.23) 

where D is the average dose at the sensitive site from the ion's B-rays. The evaluation of 

the cross section is separated by Katz, et al.75
, into a so-called grain-count regime, where 

inactivation occurs randomly along the path of the particle, and into the so-called 

track-width regime, where many inactivations occur and are said to be distributed like a 

"hairy-rope". In the grain-count regime, <i may be parameterized as64 

<i = O"o(l- e-z·z t1Cj32)m (5.24) 

where 0"0 is the Katz "saturation" value of the cross section. The effective charge number, 

Z, is given by64 

Z* =Z(l-e-12SJYZ213) 

where (3 is the ion velocity in units of the velocity of light, and the parameter K: is a 

non-dimensional size parameter related to the radius ofthe sensitive site, a0, by 

Do a~ I K: = 2 x 10-7 erg/em 

(5.25) 

(5.26) 

The transition from the grain-count regime to the track-width regime is observed to take 

place at a value of Z 21lc{32 about 4; at lower values it is in the grain-count regime and at 
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higher values the track-width regime. The fraction of the cells damaged in the ion-kill 

mode45 is P = crkJ0 • Note that in the track-width regime cr > cr0 and it is assumed that P = 

1. The track model assumes that a fraction of the ion's dose, (1-P), acts cumulatively with 

that for other particles to inactivate cells in the gamma-kill mode45
• 

The repair coefficients are found to be cell phase dependent and the G1 phase 

repair efficiencies are near the maximum for i < m a and near zero otherwise. In analyzing 

the repair-dependent experiments ofYang et al.65
, one sees that the exponential population 

shows a relatively high single-lesion repair efficiency and much lower multiple-lesion 

repair efficiencies as shown in table 10. These results are compared between the G1 phase 

repair-enhanced exposures and exponential phase repair exposures for various ions64 and 

with X-ray fractionated exposures65
• The G1 phase repair-enhanced exposures are 

performed using the process of delayed plating in which G1 exposed cells are delayed in 

the G1 phase for 24 hours after exposure66
• In exponential phase repair exposures, there is 

immediate plating whereby G1 exposed cells are separated and immediately introduced to 

nutrients after exposure. This model is used to study the functional dependence ofRBE at 

low total dose and low dose rate for the G1 phase and exponential phase repair processes. 

Sp~cial solutions of equations (5.17) to (5.19) are considered for an exposure field 

with a low constant dose rate (a;>> Is for all i,j ). At low dose rates the populations of 

cells with lesions can be approximated as64 

n1 (t) = k1 no(t)lal (5.27) 

(5.28) 
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(5.29) 

In the case of low total exposure, n0(t) may be taken as constant and the accumulation of 

misrepaired cells is written as64 

. 2. 3. 2 
nm(t) "" <Xm 1 6t (1-P)D + <Xm2 6t (1-P) DD + <Xm3 6 (1-P) D D + <Xm3 aD (5_30) 

no <XI Do <X2 D~<Xl <XJ D~<XI<Xz <XJ L 

where b is the dose rate and P = a/a0• In the case of an exponential population ~· = 0.3 

so that the first term is always dominant over the second and third term for very low dose 

rate exposures64 (ba~1 << D0). The (RBE)M is found to be 

(5.31) 

as was found for the earlier resule6
• If the repair efficiency of the G1 phase is high 

( ~· << a~o) then the higher order terms of equation (5.30) cannot be ignored in 

determining RBE for which there are important dose rate dependent factors whenever 

b >> a;Do = 0.01 Gy min·1 
• At much lower dose rates, b << 0.01 ~· Gy min·t, the 

(RBE)M given by equation (5.31) is obtained. A parameter study shows that when 
a . 
;.• < 0.03, the repair efficiency is 97 percent as noted in table 10. 

In exposures to galactic cosmic rays, the dose rate is very small, 

b = 0.5 mGy min-1<< <X;Do = 10 mGy min-1 , 

and the nonsurviving fraction of cells is64 

nm(t) ::::: <Xm 1 6t (1-P)D + <Xm3 aD 
no <X1 Do <X3 L · 

(5.32) 

(5.33) 

Note that (1- <Xm 1 a11
) and <Xm 1 a11 are the branching ratios of the reaction for 

completely repaired and completely misrepaired states respectively. The fraction of 

transformed cells in the low dose rate limit is given by the same functional form as nm(t)ln0 

with appropriate kinetic parameters for transformation. The low dose rate limit 

parameters are given in table 10. 
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Table lOa. Survival repair rates (hr"1
) and repair efficiency 

G Phase Exponential Phase 

i 1 2 ?,md 1 2 ?,md 

<X; 0.25 .125 <.08 .25 .125 <.08 
arlai·l >.97 >.84 -o .7 .118 -o 

Table lOb. Katz C3Hl0Tl/2 cell parameters 

2 cr0, em k md Do,GY 

Survival 5x1o·7 750 3 2.8 
Transformation 7xl0·11 475 3 150 

Table 1 Oc. Transformation repair rates (hr1
) and repair efficiency 

G, Phase Exponential Phase 

i 1 2 ?,md 1 2 ?,md 

<X; .25 .125 ~0.08 .25 .125 ~0.08 
-I 

arlai 1.0 1.0 0.0 .99 .70 0.0 
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5.3 Shield Material Characteristics 

Shielding the work area of an astronaut crew will always result in a wall thickness 

that is small in comparison with the linear dimension ofthe crew compartment. The shield 

mass is proportional to the areal density (g/cm2
) which is the appropriate measure of shield 

thickness. 

Shield properties depend on the basic atomic/molecular and nuclear cross sections. 

Atomic/molecular stopping cross sections depend on the number of electrons per unit 

volume, the electron mean excitation energy, and binding corrections for the inner shell 

electrons. Materials with the most electrons per unit mass, the least mean excitation 

energy, and the lowest binding corrections make the best energy absorbers. Thus, liquid 

hydrogen is the best material while lead is much less efficient as an energy absorber47
• For 

example, a 825 MeV/amu iron ion will come to rest in 10 g/cm2 of liquid hydrogen but 

requires 38 g/cm2 oflead77
• 

The nuclear cross sections relate not only to the mean free paths for nuclear 

reactions but to the nature of the reaction products. The total nuclear cross section 

projected by the nuclei in a unit mass of material (cm2/g) is the appropriate parameter for 

nuclear interaction. The nature of the reaction products is equally important. In the 

144 
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production cross sections per unit mass of shield at high energy, the low Z-shields are 

favored because of the short mean free paths of the particle47
• 

145 

The microscopic fluctuations in the energy absorption events of several ions are 

represente~ parametrically as a function ofLET in figures 31 to 34. Although LET is a 

less than perfect indicator of the microscopic damage, it is a useful physical quantity to 

indicate 11radiation quality .. , is still the focus of many biological investigations, and serves 

as the basis of conventional radiation protection practice62
• The transmitted differential 

LET spectra for GCR particles through four shield materials are shown in figures 36 to 

39. The attenuation of the highest LET components is seen in each material with liquid 

hydrogen being the most efficient and lead the least. The left hand discontinuities are 

associated with the minimum ionization at relativistic energies for each ion type46
• The left 

most discontinuity at 0.2 keV/Jlm is due to the hydrogen isotopes followed by helium at 

0.8 keV/Jlm and so on through the nickel isotopes. The smaller right hand discontinuities 

are associated with maximum ionization in the stopping region (Bragg peak). For 

example, the first such peak at 100 keV/Jlm is due to the hydrogen isotopes, and the 

second peak at 200 keV/Jlm is due to the helium isotopes. It was once thought that the 

ions in the stopping region may be the primary hazard12
• Figures 36 to 39 show that these 

stopping ions make a rather small contribution to the total exposure. Beyond the Bragg 

peak, there is a significant buildup of secondary particles, since the secondary lighter ions 

penetrate to large depths. The quality factor of these secondary particles is not always 

smaller than that of the primary ions, because the maximum quality factor is at an LET 
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value around 100 keV/J.Lm. Thus, the total exposure would increase beyond this stopping 

region. A factor of2-3 uncertainty exists for the LET region above 100 keV/J.Lm due to 

uncertainty in the nuclear cross sections78
• Adding energy dependence in the nuclear cross 

sections results in a 50 percent increase above 100 keV/J.Lm4
2.

54
• From figure 38 one sees 

that ,e.g., for 30 glcm2 of shielding the particles with LET less than 10 keV/J.Lm are more 

abundant while those with greater LET are less abundant. This defines 10 ke V /J.Lm as a 

pivotal LET for that shield thickness. This pivotal LET value, above which the differential 

LET values decrease and below which they increase as a shield thickness increases, is a 

function of the shield composition increasing to 40-50 keV/J.Lm for lead and less than 1 

keV/J.Lm for liquid hydrogen. The pivotal LET value is associated with the loss and 

production of a given species by nuclear events. The pivotal LET is thus a useful 

parameter in the consideration of the microscopic energy absorption events which 

ultimately affects biological response. Clearly, the shield effectiveness for biological 

exposure is intimately related to the nature of the nuclear cross sections. Although the 

absolute human risk is not known due to biological uncertainty, the relative effectiveness 

of added shielding under two diverse model types will be judged. 
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5.3 .1 Illustrations of Shield Effectiveness 

Shield material characteristics are examined in terms oftwo biological models 

above in section 5 .2. The first model is the conventional risk assessment method62 and 

uses quality factor as a function ofLET. The second model is a track-structure repair 

kinetic model64 for the mouse cell C3H10Tl/2 for which there is a large body of 

experimental data with various ions in which repair kinetic studies were made65
• 
66

• The 

shield effectiveness is evaluated as a function of the shield mass necessary to reduce the 

biological effects using these biological response models. 

The first illustration is found using the conventional risk assessment method. The 

distribution of particle fluence behind a 5 g/cm2 aluminum shield is converted to 

distribution of absorbed dose over the same LET intervals54 as shown in figure 40. Then, 

the dose equivalent distribution is obtained by multiplying the absorbed dose at each LET 

by the corresponding quality factor62 as shown in figure 3 5. The quality factor estimates 

the effect of a few cells being hit with large mean hit size by high LET components. A 

large contribution to dose equivalent results from ions in the LET interval from 10 to 103 

keV/Jlm. These are the most significant components by conventional dosimetry. 
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The relative attenuation of dose equivalent as a function of areal density, 

H(x)IH(O), is shown in figure 41. It is clear that modification of the LET distribution 

depends upon the shield composition. Lead shielding in which the LET pivot point is near 

the peak of the LET contributions to dose equivalent is a poor shield material for the GCR 

environment. Clearly, the lower the LET pivot point, the better is the shield performance 

of the material. On this basis, liquid hydrogen is the optimal selection. Liquid hydrogen is 

of course a difficult material to use because its low boiling temperature. For practical 

spaceflight, it is important to evaluate less than optimal shield materials which are more 

useful in vehicle construction. Furthermore, the adequacy of results derived using quality 

factors to ~epresent biological systems is still in question for HZE particles. 

A second illustration is found using a model for the survival and neoplastic 

transformation of the C3H10Tl/2 mouse cell for which there is sufficient experimental 

data for developing a reasonable model64
• Unlike conventional dosimetric analysis, the 

repair kinetics model is driven by track-structure dependent injury coefficients. The 

cellular repair kinetics model was solved at low dose rate for a one-year exposure behind 

the four shields shown in figures 36 to 39. The geometric hit frequency, the initial level of 

cell injury, and the unrepaired cell injury leading to clonogenic death in a C3Hl0Tl/2 

mouse cell population were calculated64 as shown in figure 42. This figure shows that, 

although the cell is most often hit by protons and helium ions, the probability of injury is 

small and the repair efficiency is high, with little permanent injury64
• Conversely, silicon 

and iron ions have a high probability of injury and a near-zero efficiency of repair. As a 
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consequence, most clonogenic death from GCR exposure comes from ions with LET 

above 10 keV/J.lm (ions above relativistic carbon). Radiation injury from these ions shows 

minimal cellular repair. Although the two biological models are qualitatively similar in the 

degree of injury from various LET components, there are important track structure 

dependent differences. As a result, dose protraction, which is an extended exposure 

period for the same accumulated dose, will be less effective in reducing the biological 

response for GCR exposure. 

The relative change in radiation-induced transformations, the ratio of T(x) behind a 

shield of thickness x to T(O) in free space, for a one-year exposure in space is shown in 

figure 43. Although the attenuation characteristics for various shield materials are 

qualitatively similar to the attenuation of dose equivalent shown in figure 41, there are 

important quantitative differences. This is best seen in terms of the attenuation ofthe 

transformation rate in a given material compared with attenuation of the dose equivalent in 

the same material. The relative attenuation for transformation rate and dose equivalent are 

plotted in figure 44 for the data shown in figures 41 and 43. Ifthe dose equivalent 

represented the neoplastic transformation data, then all curves in figure 44 would lie on a 

single line with unit slope. Here, only liquid hydrogen shows good correlation between 

the two biological models. Therefore, the dose equivalent is not adequate to represent the 

neoplastic transformation yield for the other shield materials. 
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The rates of attenuation ofbiological effects as estimated by the two risk models 

are similar only for the liquid hydrogen shield, because the hydrogen shield reduces all 

LET components above a few ke V /Jlm (LET pivotal value). This implies that the 

ICRP6062 quality factor in some way represents the dependence on radiation quality in this 

case. The LET pivotal value increases with the shield atomic number, and the mixture of 

ion charge and LET are radically altered for different materials. The two biological 

response models show greatly different results for non-hydrogenous shields as shown in 

figure 44. The quality factor is less useful for shields containing non-hydrogenous 

components and is a poor indicator for lead shields to represent the neoplastic 

transformation ratio. Very similar results are found for clonogenic death ofthe 

C3H10Tl/2 cells as well64
• What is very clear from figure 44 is that the use oflocal 

materials, such as regolith, for a lunar surface operations or space exploration shielding 

designs based on quality factors remains in great doubt. 
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5.3.2 Proposed Shield Performance Index 

To assign a quantitative measure of shield performance44
, a track structure kinetics 

model ofthe C3H10T1/2 cell system is considered for clonogenic death and neoplastic 

transformation64
• This model is evaluated for a one-year exposure for various shield 

materials at the various depths. Results are shown in figure 43. Note that the depths in 

units of areal density are proportional to the total shield mass of a large shielded region. 

The exposure conditions assume a stationary G1 phase exposure for a constant dose rate 

over a 1-year period. The cell transformation behind an aluminum shield of areal density 

x, TA1 , compared to that for a different material ofthe same areal density, TmCx), is taken 

as a cell-transformation ratio. 

C 11 
;._ . . TAz(x) 

e -trans1ormat10n ratto= T m(x) . (5.34) 

This is a measure of the relative biological protection of the two materials. 

It has been shown that the cell-transformation ratio does not correlate well with 

dose equivalent44 (also see figure 44 herein). The reductions in absorbed dose and dose 

equivalent are highly inaccurate to assess shield performance for biological protection of 

long-term exposure by galactic heavy ions. These conventional practices in radiation 

protection are considered adequate for the relatively low LET radiations14
• To assess 

shield performance by GCR exposure, the biological risk is separated into a 
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By assuming that the response in the limit oflow LET is matched to that ofy-ray 

exposure, which is given in equation (5.2), then44 

<1g { 1) ky = 6.24Lb1 E . 
y 

(5.38) 

Since the average lineal energy (lineal energy is the event size E; divided by cell mean 

chord) is numerically equal to the LET70
, <en> is proportional to <Ln>, by which equation 

(5.37) can be simplified. From equation (5.38) and (5.5), the total risk R in a mixed 

environment is the sum over all LET components as44 

R = 0.16 J k1(L+a~L2 +a~L3 + ... )$LdL = 0.16ky <L > $+0.16ky ±a~ <£1 > $ (5.39) 
i=2 

where $ is the total fluence. Within this microdosimetric model, the biological risk is 

related to physical aspect, which is the LET moments, and the clarification of the 

biological response would correspond to new values of a'r The five lowest moments of 

LET are shown in table 11. The zeroth-order moment (i=O) is the total particle flux in 1 

year. The first-order moment is the locally absorbed dose in a water sample and always 

equals to <L>$. The second-order moment is nearly proportional to dose equivalent44
• 

The ratio of the second moment to the first moment is approximately related to the 

average quality factor Q. On the basis of conventional dosimetry, Q would be l+a'2<L2> I 

<L> for the conventional radiation (e.g., relatively low LET radiation) and would leave 

higher terms undefined. Therefore, the material with the lowest value of <L2> I <L> 

would be the best shield by minimizing the dose equivalent. However, the higher order 

terms are important to assess the shield performance for the GCR environment44
• A 

correlation of cell transformation was found in terms ofthe square ofthe ratio ofthe 

fourth moment to the second moment44 
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(5.40) 

(5.41) 

The relative performance index in table 11 indicates closely the biological consequences 

such as the cell transformation ratio. The higher LET moments show increasingly strong 

material dependence, especially at the larger thicknesses47
• The material dependence of 

cell transformation is more characteristic of the higher than the lower LET moments. It 

suggests that dose and dose equivalent, which require only up to the second order term, 

are poor indicators ofbiological risk for the GCR environment44
• Therefore, a material 

with the lowest value of equation (5.40) would minimize the cell transformation, and it 

would be judged the best shield for the GCR environment. For deep-space missions with 

very high LET radiations, the a'; terms fori >2 in equation (5.39) must be determined for 

the end points by biological experiments with very high LET radiations. 

The relative performance index correlates well with the cell-transformation ratio44
• 

Thus a material with the relative performance index of 2 for a given areal density would 

provide approximately twice as much biological protection as an aluminum shield without 

increasing the shield mass. The cell-transformation ratio is shown in figures 45 and 46 as 

a function of areal density for different shields relative to the aluminum standard. The 

comparison of cell-transformation ratios for liquid hydrogen, lithium hydride, and lead is 

shown in figure 46. In this figure, the cell-transformation ratio for liquid hydrogen shows 

a linear relationship to its areal density, x, with a best fit of 

TAI(x)/Tn2(x) = 1 +0.383976x. (5.42) 
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For lithium hydride, the ratio has an exponential relationship to x with a best fit of 

TAl(x)ITL;n(x) =exp(0.07176x-0.0014999x2 ) (5.43) 

and for lead, the best fit is 

TAl(x)/Tpb(x) =exp(-0.08366x+ 0.001965x2). (5.44) 

Liquid hydrogen shows great promise as a high performance shield material with 

increasing shield depth, x. The cell transformation ratio can provide the relative 

performance index for all shield materials because of the excellent linearity between the 

cell-transformation ratio and relative performance index for GCR environment. 
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Table 11. Moments ofLET in units of(MeV/cmY cni2 behind various shield materials for 

a year exposure of GCR at solar minimum and their correlated quantities 

Shield Shield i = 0, i = 1, i = 2, i = 3, i = 4, Pm(x), Pm(x) 
material thickness 108 109 1012 1016 1019 1015 

free 1.29 1 1.7 3.7 118 
space 

AI 2 g/cm2 1.32 .916 .47 .278 4.84 10.6 1 
5 g/cm2 1.35 .897 .365 .201 3.42 8.78 1 
10 g/cm2 1.38 .866 .253 .124 2.05 6.57 1 

Fe 2 g/cm2 1.34 .938 .493 .303 5.41 12 .88 
5 g/cm2 1.35 .942 .407 .235 4.14 10.4 .85 
10 g/cm2 1.38 .923 .302 .158 2.72 8.11 .81 

Poly- 2 g/cm2 1.31 .849 .4 .22 3.65 8.33 1.27 
ethylene 5 g/cm2 1.33 .787 .261 .128 2.03 6.05 1.45 

10 g/cm2 1.34 .716 .143 .0586 .864 3.65 1.80 
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5.3.3 Nuclear Attenuation and Shield Performance 

The analysis of shield performance in section 5.3.2 above was cast in terms of the 

microscopic fluctuations of energy deposition in the exposed biological systems. The 

range of such fluctuations are determined by the particle type and energy as shown in 

figures 31 to 34. It is difficult to relate any particular LET interval with any particular 

specie of the radiation field or to the specific nuclear processes by which the field 

composition is altered. 

The nuclear data are represented by two parameters as they affect the radiation 

field. The first is the mean free paths of individual species to a nuclear reaction site and 

the second. is the array of secondary products ofthe reactions. The nuclear mean free 

paths are among the best known nuclear parameters for a limited number of 

projectile-target combinations and beam energies. Theoretical estimates calculated from 

the elastic channel amplitudes can be made without a detailed knowledge of the nuclear 

excitation spectra since the results are little affected by coupling to inelastic processes79
• 

Confidence in the calculations is achieved by the fact that the calculated values agree well 

with the limited number of experimental nuclear absorption cross sections which have 

been measured80
• 
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On the other hand, the nuclear breakup depends on the details of both the discrete 

and continuous nuclear excitation spectra and except for very light nuclei theoretical 

calculations are not possible. Fortunately, the charge distribution of any particular 

fragment mass is dominated by the nuclear binding and not so much by the means through 

which the fragments are produced. Such charge distributions for proton-induced reactions 

have been studied extensively by Rudstam40
• The mass removal cross section could be 

estimated by a semiempiricalliquid drop model in which the surface energy has an 

empirical correction for highly misshapen nucleP0
• This semiempirical correction is 

adjusted to fit the available experimental data though there is a paucity ofthis data. 

Therefore the validity of this model is still in question. 

In viewing the theoretical calculation of the nuclear mean free paths47
, it is clear 

that the hydrogen shield presents the greatest cross section per unit mass. In addition, the 

lighter mass shields are more effective than those of heavier mass in reacting with the 

heavier ions. However, the fragment distributions produced also affect the results54
• 

The effects of the fragment distributions can be studied by looking at the physical 

limits of the fragmentation event. These limits are an extreme peripheral collision in which 

a single nucleon is removed per collision and an exact central collision in which the 

nucleus is completely dissociated into nucleonic components. For a nominal collision, the 

nuclear fragmentation parameters are generated using the nuclear database (NUCFRGl0
• 
41 

model) in section 2.2.2. The effects of these collision types on several shield materials are 
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shown in figures 47 to 50. Because ofthese limits, there are great effects of the 

uncertainty in the nuclear fragmentation events on the transformation rates of the 

C3HIOT1/2 cell system. This uncertainty is undoubtedly due to the dependence ofthe 

transformation rates on the higher moments of the LET distribution which are sensitive to 

the distribution of fragments produced in the nuclear events44
• Although the LET 

distribution is closely related to the energy fluctuation in specific target sites within the 

tissue system, there is no direct relation ofLET to particle type and it is difficult to relate 

the LET distribution to the fragmentation process. 

An alternate means of representing the biological response data is to use 

contributions ofbiological change from each charge group of the environment as shown in 

figures 51 to 54. It is clear from these figures that the efficiency ofthe liquid hydrogen 

shield comes from its ability to rapidly attenuate the HZE components. For example, 

interactions by the iron flux in free space account for nearly 30 percent of the cell 

transformations. This is reduced by several orders of magnitude behind a 30 g/cm2 liquid 

hydrogen shield compared with a reduction of only a factor of three behind an equivalent 

mass oflead shielding. In liquid hydrogen, all components are attenuated to some degree 

while in the lead shield the number of light ions tend to increase as the heavier ions slowly 

attenuate. In addition, the number of neutrons, protons, and helium ions are greatly 

increased over their free space values behind a lead shield, in part, due to secondary 

production from the target nuclei. These charge distributions are intimately related to the 

reduction of the high LET moments and are closely related to the shield parameters 
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studied in laboratory experiments with HZE beams. Clearly, hydrogen-containing 

materials will play an important role in shielding during long-term space exposure. 
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5.4 Results and Discussion 

By choosing appropriate compositions for structural materials, the exposure risk 

for humans from space radiations can be reduced. Based on the shield material 

characteristics discussed above in section 5.3, polymeric materials and lunar regolith were 

evaluated for the prediction of the biological effects of a one-year exposure to GCR at the 

1977 solar minimum. Six polymeric materials were evaluated ranging from polyethylene, 

the polymer with the highest hydrogen content, to polytetrafluoroethylene with no 

hydrogen. As expected from earlier calculations47 for liquid hydrogen, polyethylene is the 

most efficient of the materials studied in removing the high LET components from GCR 

without adding greatly to the low LET radiation fields. Figures 55 and 56 illustrate that to 

shield against biological effects, polyethylene is the most effective and 

polytetrafluoroethylene the least. 

A lunar-regolith/epoxy mixture is a potential construction material for a habitat 

during long-term lunar missions. Regolith is able to attenuate the high LET components 

but also adds to the low LET fields, because it contains significant amount of the elements 

Si (19.3 mol-%), AI (7.5), Fe (6.1), and Mg (5.5). The results of calculations shown in 

figures 57 and 58 illustrate that lunar regolith is a less effective shield material for HZE 

particles than the hydrogen-containing polymers studied. Hydrogen in a polymer such as 
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an epoxy improves the shielding capability of regolith as shown in figures 57 and 58. 

Using an epoxy as a binder, regolith building blocks can be manufactured. This provides 

structures which are more durable, more versatility in design and utility, and safer in terms 

of radiation exposure. 

Biological effects are reduced efficiently not only by selecting different materials 

but also by adjusting the thickness of the material. This is shown in figures 55 to 58 where 

the attenuation ofbiological effects are measured in terms of dose equivalents (figures 55 

and 57) and cell transformations (figures 56 and 58) in a one-year exposure behind various 

shield materials as a function of shield thickness. The variation in the two measures of 

biological effects, neoplastic cell transformations and dose equivalents, shows a material's 

dependence qualitatively. However, there are important quantitative differences in the 

protective properties of shield materials dependent on the biological model used. Clearly, 

many shield materials provide only modest reductions in neoplastic transformation ratios 

as shown i!l figures 56 and 58; whereas, in figures 55 and 57, the dose equivalent shows 

much greater reductions for the same shield thickness. 

The transmitted annual fluences of particles at various thicknesses are shown in 

figures 59 to 61 to represent the shield properties for nominal collisions for three 

potentially important materials for deep space missions: polyethylene, one of the more 

applicable polymers, aluminum, the usual space construction material, and lunar regolith, 

the material readily available on the lunar surface. The change in the fluence is shown in 
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free space and at shielding thickness of5, 15, 30 g/cm2
• The uncertainty in the transmitted 

fluence at 30 g/cm2 due to the two physical limits is shown in figures 62 to 64 for the three 

materials. The greatest uncertainties are in the highest LET components where the 

greatest uncertainty in biological response is expected due to uncertainty in the nuclear 

cross sections78
• The effects of the shield material transmission characteristics are shown 

on dose equivalent in figures 65 to 67 and on cell transformation rate in figures 68 to 70 

for the three nuclear collision models. The uncertainty in transmission characteristics of 

the shield materials would be as large as a factor of two. This modest uncertainty requires 

excess mass over nominal shielding architectures and must be reduced for efficient space 

travel. 

Using current estimates for nominal collisions has shown that the HZE ions in 

space pose a significant hazard to biological systems and that the LET distribution above 

about 10 keV/f..Lm is an important indicator ofbiological damage. Furthermore, the LET 

distribution is a function of shield composition, even with materials of the same areal 

density. Polyethylene, with its short nuclear absorption lengths and higher nuclear 

attenuation rate, is an efficient shield material for GCR exposure in spite of the large 

number of heavy projectile fragments produced. The unique role ofhydrogenous 

materials as high-performance shields is clear, even though an accurate evaluation of risk 

reduction is not possible. 
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6. Summary and Conclusion 

Galactic cosmic radiation impacting on the exterior of a spacecraft can result in an 

increased number offragments inside the spacecraft due to the production of secondary 

radiation t~rough interactions with the spacecraft material. These radiation components 

present a hazard to humans and microelectronic devices. Selecting an appropriate 

composition of a structural piece or a container is a recognized means of reducing the 

radiation hazard to humans and microelectronic devices from space radiation and 

secondary neutrons on high-altitude airplanes, in low-Earth orbit, or in deep space 

missions. 

Hydrogen-containing polymeric materials may have utility as shielding from GCR, 

because theoretical calculations47 show that hydrogen presents the greatest cross section 

per unit mass. Additionally, hydrogen is particularly effective in reducing the energy of 

secondary neutrons generated in the shield through elastic collisions thereby making them 

more susceptible for absorption by other atoms such as boron. Calculations were 

performed for the propagation and interactions of particles having high atomic numbers 

and energy through six polymeric materials, both pure and loaded with boron, and with 

epoxy-bound lunar regolith. The modelings were carried out with the transport codes for 

laboratory ion beams and the cosmic ray spectrum at the 1977 solar minimum. Shield 
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effectiveness was measured from the back side of the shield in several ways: as the 

fluence of projectiles and their fragments from laboratory ion beams, as the SEU response 

of microelectronic devices from the GCR, and as the biological response of living tissue 

from the GCR. 

Energetic primary particles undergo nuclear reactions before stopping in a shield 

medium. The secondary radiation resulting from these reactions yields lighter particles 

with a broad distribution of energies. The flux of each radiation with a broad energy 

distribution behind a shield material was integrated numerically to compute the total ion 

fluence for laboratory ion beams. This quantity was then compared for different materials. 

For energetic ion beams, polyethylene with its high hydrogen density is the most effective 

absorber for thick shields, while polytetrafluoroethylene with the heavier fluorine atoms 

appears to be more effective for thin shields due to lower production of secondary 

radiation. The inclusion of boron in a polymeric material only slightly diminishes the 

capacity of the material to absorb HZE particles but dramatically increases its ability to 

absorb low energy neutrons. Lunar regolith is a less effective shield material for HZE 

particles than the hydrogen-containing polymers studied. Adding an epoxy to bind lunar 

regolith in a mixture enhances its shielding properties from HZE particles because of the 

hydrogen contained in the epoxy. Therefore, a material with a high percentage oflighter 

atoms such as hydrogen would be effective for thick shields while a material composed of 

heavier atoms might yet prove to be more effective in thin shields for energetic ion beams 
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with respect to the number of secondary particles and without considering their radiation 

quality. 

The fragmentation during nuclear reactions by and of an iron ion produces 

hundreds of isotopes. These isotopes are represented in the solution ofthe transport 

problem. A reduced set of isotopes was selected to minimize the computational burden 

but errors in the final result were introduced. A determination of the smallest isotope table 

to produce an adequate laboratory beam simulation was required. Improvements in the 

treatment of the nuclear database were obtained by a determination of an optimal isotope 

table that gives both computational precision and practical computation time. The effects 

on isotope list selection were studied on the mass and charge distributions for an iron 

beam in an epoxy. Charge distribution converges within 3.1 percent ofthe fluence spectra 

for a table of80 isotopes compared to that of the largest table ofl25 isotopes. The 

convergence is within 2. 7 percent for a table of 100 isotopes. Mass distribution converges 

within 5 percent of the fluence spectra for a table of 122 isotopes. Iron is the most 

abundant massive ion in space and the fragmentation event is dominated by the nuclear 

structure of the projectiles, so these results are generally applicable to other materials and 

ions important to the space radiation problem. 

Interaction data were combined in the Boltzmann equation with the 1977 solar 

minimum cosmic ray spectrum59 to evaluate the transmitted environment through various 

shields. To predict the SEU error rate on SRAM, the resultant LET spectra through 

-------· ·---· ·--·----------··· -· 
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various materials using the HZETRN code18 were coupled with a measured SEU cross 

section versus LET curve. High-LET ions are very instrumental in causing an SEU, so 

high-LET degraders are necessary for reducing SEU rates. The SEU error rate on SRAM 

is a rapidly decreasing function of shield thickness. Materials as diverse as liquid hydrogen 

(Z=l}, aluminum (Z=13}, iron {Z=26), copper (Z=29), and lead (Z=82}, have been 

surveyed as shields against SEUs on SRAM. In addition, hydrogenous materials such as 

polyethylene, and lithium hydride were also surveyed. A liquid hydrogen shield is an ideal 

selection for attenuating all radiation components if structural considerations are ignored. 

The galactic cosmic high-LET ions were attenuated better in hydrogenous material such as 

polyethylene, which was a more effective high-LET degrader than metals. The result 

indicates that polyethylene provides good shielding efficiency against SEU. 

The transmitted environment through various shields was used for further 

evaluation ofbiological effects. The shield effectiveness is intimately related to the nature 

of the nuclear cross sections through the change in the microscopic fluctuations in 

biological exposure. The shield effectiveness was examined in terms of two biological 

models. The first model is the conventional risk assessment method using the quality 

factor as a function ofLET62
• The second model is a track structure repair kinetic model64 

for the mouse cell C3H10Tl/2. 

The dose equivalent H(x), which is obtained by multiplying the absorbed dose at 

each LET by the corresponding quality factor62
, is a measure of the response of living 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

203 

tissue to radiation. The quality factor was used to estimate the dose equivalent because all 

cells do not absorb energy equally from each LET component. Among the materials 

studied, polyethylene provides the most effective shielding at all thicknesses in terms of 

the relative attenuation of dose equivalent, H(x)IH(O). Polyethylene is more effective than 

polytetrafluoroethylene even for very thin films because of its greater efficiency in 

attenuating the heavier ions that are the most destructive to living tissue. This result 

shows that polyethylene, with its short nuclear absorption length and the higher nuclear 

attenuation rate, is an efficient shield material for GCR exposure in spite of the large 

number of·heavy projectile fragments produced. The calculations show lunar regolith to 

be a less effective shield material for GCR exposure than the hydrogen-containing 

polymers studied. 

The second study ofthe response ofliving cells to the effects ofGCR is 

represented in terms of occurrences ofneoplastic cell transformations, T(x), resulting from 

a one-year exposure behind a shield of thickness x relative to occurrences, T(O), in free 

space. Unlike conventional dosimetric analysis, wherein radiation quality is represented by 

LET-dependent quality factors,.the repair kinetics model is driven by track-structure 

dependent injury coefficients64 from experimental data with various ions. The variation in 

the calculated cell transformation ratio, T(x)IT(O), shows that the dependence on material 

is qualitatively similar to that found for H(x)/H(O). However, there are important 

quantitative differences in the protective properties of shield materials dependent on the 

biological model used. Clearly, many shield materials provide only modest reductions in 
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neoplastic transformation ratios; whereas, they show a much greater reduction in dose 

equivalent for the same shield thickness. Complete shield optimization must await an 

improved understanding ofbiological response. 

204 

Radiation risks depend on the microscopic fluctuations of energy absorption events 

in specific tissues77
• Materials with atoms oflow atomic number (e.g., liquid hydrogen) 

attenuate a very broad range of LET components47 even though there is a gain in many 

low LET components as shield thickness increases. However, the effects from these low 

LET components on cells are primarily indirect damage in cellular DNA brought about by 

OH radicals and are of negligible significance81
• Materials with atoms of higher atomic 

number (e. g., lead) attenuate only the highest LET components47 at the expense of 

producing a broad range of LET components for which biological response may be 

enhanced relative to free space exposures. These results47 also occur for aluminum with 

thicknesses of2 to 10 g/cm2 which are typical for the space program. The effects of 

nuclear model uncertainty is more important in the case of cell transformation because 

there are important quantitative differences in the predicted biological effects between the 

two biological models. Uncertainties in the nuclear database exist for the calculation of 

the radiation field modified by different polymeric materials. The biological uncertainty is 

associated with the track structure of the energetic ions. The greatest uncertainty in 

biological response is expected from high-LET components61
• However, a relatively 

appropriate shield material optimization is achieved by the estimation of shield 

effectiveness using the cell transformation ratio relative to free space in order to provide 
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protection against exposure of diverse radiation types, which is typical of GCR exposure. 

The unique role of hydrogenous materials, such as polymers, as high-performance shields 

is clear, even though an accurate evaluation of risk reduction is not possible because ofthe 

current uncertainty. 
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