197 research outputs found

    Clinical Characteristics of Patients Diagnosed With Odontogenic Rhinosinusitis After Dental Implants

    Get PDF
    Background and Objectives With the ongoing development of intraoral surgical treatment and invasive dental treatments such as implants, odontogenic rhinosinusitis (ORS) is on the rise. ORS related to dental implants accounts for 8% to 37% of cases. The purpose of this study is to define the characteristics of patients with ORS related to dental implants. Methods From 2015 to 2019, the medical records of 15 patients who developed maxillary sinus disease after receiving dental implants were retrospectively analyzed among patients who visited the ear nose and throat and dentistry departments. We reviewed the chief complaint, assessment, diagnosis, treatment and prognosis of these patients. Results Of the 15 patients, all were diagnosed with ORS. One patient with a post-operative cheek cyst, 1 with fungal sinusitis, 1 with an inverted papilloma, 1 with chronic rhinosinusitis, and 1 with a radicular cyst were diagnosed after surgery. Endoscopic sinus surgery was performed in 14 patients and 2 patients underwent a combined operation. One patient improved after medical treatment. The follow-up period was about 8.6 months. No recurrence was found in any of the patients. Conclusion If an implant problem is suspected based on history-taking and physical examination, active consultation with dentistry is needed to diagnose ORS

    Regulating the surface of anion-doped TiO2 nanorods by hydrogen annealing for superior photoelectrochemical water oxidation

    Get PDF
    Dedications to achieve the highly efficient metal oxide semiconductor for the photoelectrochemical water splitting system have been persisted to utilize the TiO2 as the promising photoanode material. Herein, we report notable progress for nanostructured TiO2 photoanodes using facile sequential one-pot hydrothermal synthesis and annealing in hydrogen. A photocurrent density of 3.04 mA·cm−2 at 1.23 V vs. reversible hydrogen electrode was achieved in TiO2 nanorod arrays annealed in hydrogen ambient, which is approximately 4.25 times higher than that of pristine TiO2 annealed in ambient air. 79.2% of incident photon-to-current efficiency at 380 nm wavelength demonstrates the prominence of the material at the near-UV spectral range region and 100 h chronoamperometric test exhibits the stability of the photoanode. Detailed studies regarding crystallinity, bandgap, and elemental analysis provide the importance of the optimized annealing condition for the TiO2-based photoanodes. Water contact angle measurement displays the effect of hydrogen annealing on the hydrophilicity of the material. This study clearly demonstrates the marked improvement using the optimized hydrogen annealing, providing the promising methodologies for eco-friendly mass production of water splitting photoelectrodes.The authors gratefully acknowledge the fnancial support from the Creative, Material Discovery Program (2016M3D1A1027666, 2017M3D1A1040834, 2018M3D1A1058793) through the National Research Foundation of Korea funded by Ministry of Science and ICT, the Basic Research Laboratory Program through an NRF grant funded by the Korean Ministry of Science, ICT and Future Planning (2021R1A4A302787811), the KRISS (Korea Research Institute of Standards and Science) MPI Lab. Program and the National Research Foundation of Korea (NRF) grant funded by the Korea Government MSIT (2021R1C1C2006142), and Nuclear Energy R&D Program(2020M2D8A206983012). The Inter-University Semiconductor Research Center and Institute of Engineering Research at Seoul National University provided research facilities for this work

    Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries

    Get PDF
    Redox-active organic materials (ROMs) have recently attracted significant attention for redox flow batteries (RFBs) to achieve green and cost-efficient energy storage. In particular, multi-redox ROMs have shown great promise, and further tailoring of these ROMs would yield RFB technologies with the highest possible energy density. Here, we present a phenazine-based catholyte material, 5,10-bis(2-methoxyethyl)-5,10-dihydrophenazine (BMEPZ), that undergoes two single-electron redox reactions at high redox potentials (-0.29 and 0.50 V versus Fc/Fc(+)) with enhanced solubility (0.5 M in acetonitrile), remarkable chemical stability, and fast kinetics. Moreover, an all-organic flow battery exhibits cell voltages of 1.2 and 2.0 V when coupled with 9-fluorenone (FL) as an anolyte. It shows capacity retention of 99.94% per cycle over 200 cycles and 99.3% per cycle with 0.1 M and 0.4 M BMEPZ catholyte, respectively. Notably, the BMEPZ/FL couple results in the highest energy density (similar to 17 Wh L-1) among the non-aqueous all- organic RFBs reported to date

    Neogenin expression may be inversely correlated to the tumorigenicity of human breast cancer

    Get PDF
    BACKGROUND: Neogenin is expressed in cap cells that have been suggested to be mammary stem or precursor cells. Neogenin is known to play an important role in mammary morphogenesis; however its relationship to tumorigenesis remains to be elucidated. METHODS: To compare the expression levels of neogenin in cells with different tumorigenicity, the expression levels in M13SV1, M13SV1R2 and M13SV1R2N1 cells, which are immortalized derivatives of type I human breast epithelial cells, were evaluated. Then we measured the expression level of neogenin in paired normal and cancer tissues from eight breast cancer patients. Tissue array analysis was performed for 54 human breast tissue samples with different histology, and the results were divided into four categories (none, weak, moderate, strong) by a single well-trained blinded pathologist and statistically analyzed. RESULTS: The nontumorigenic M13SV1 cells and normal tissues showed stronger expression of neogenin than the M13SV1R2N1 cells and the paired cancer tissues. In the tissue array, all (8/8) of the normal breast tissues showed strong neogenin expression, while 93.5% (43/46) of breast cancer tissues had either no expression or only moderate levels of neogenin expression. There was a significant difference, in the expression level of neogenin, in comparisons between normal and infiltrating ductal carcinoma (p < 0.001). CONCLUSION: Neogenin may play a role in mammary carcinogenesis as well as morphogenesis, and the expression may be inversely correlated with mammary carcinogenicity. The value of neogenin as a potential prognostic factor needs further evaluation

    Rapid Turnover of Cortical NCAM1 Regulates Synaptic Reorganization after Peripheral Nerve Injury

    Get PDF
    Peripheral nerve injury can induce pathological conditions that lead to persistent sensitized nociception. Although there is evidence that plastic changes in the cortex contribute to this process, the underlying molecular mechanisms are unclear. Here, we find that activation of the anterior cingulate cortex (ACC) induced by peripheral nerve injury increases the turnover of specific synaptic proteins in a persistent manner. We demonstrate that neural cell adhesion molecule 1 (NCAM1) is one of the molecules involved and show that it mediates spine reorganization and contributes to the behavioral sensitization. We show striking parallels in the underlying mechanism with the maintenance of NMDA-receptor- and protein-synthesis-dependent long-term potentiation (LTP) in the ACC. Our results, therefore, demonstrate a synaptic mechanism for cortical reorganization and suggest potential avenues for neuropathic pain treatment

    Pyruvate Dehydrogenase Kinase Is a Metabolic Checkpoint for Polarization of Macrophages to the M1 Phenotype

    Get PDF
    Metabolic reprogramming during macrophage polarization supports the effector functions of these cells in health and disease. Here, we demonstrate that pyruvate dehydrogenase kinase (PDK), which inhibits the pyruvate dehydrogenase-mediated conversion of cytosolic pyruvate to mitochondrial acetyl-CoA, functions as a metabolic checkpoint in M1 macrophages. Polarization was not prevented by PDK2 or PDK4 deletion but was fully prevented by the combined deletion of PDK2 and PDK4; this lack of polarization was correlated with improved mitochondrial respiration and rewiring of metabolic breaks that are characterized by increased glycolytic intermediates and reduced metabolites in the TCA cycle. Genetic deletion or pharmacological inhibition of PDK2/4 prevents polarization of macrophages to the M1 phenotype in response to inflammatory stimuli (lipopolysaccharide plus IFN-γ). Transplantation of PDK2/4-deficient bone marrow into irradiated wild-type mice to produce mice with PDK2/4-deficient myeloid cells prevented M1 polarization, reduced obesity-associated insulin resistance, and ameliorated adipose tissue inflammation. A novel, pharmacological PDK inhibitor, KPLH1130, improved high-fat diet-induced insulin resistance; this was correlated with a reduction in the levels of pro-inflammatory markers and improved mitochondrial function. These studies identify PDK2/4 as a metabolic checkpoint for M1 phenotype polarization of macrophages, which could potentially be exploited as a novel therapeutic target for obesity-associated metabolic disorders and other inflammatory conditions

    Methylsulfonylmethane Suppresses Breast Cancer Growth by Down-Regulating STAT3 and STAT5b Pathways

    Get PDF
    Breast cancer is the most aggressive form of all cancers, with high incidence and mortality rates. The purpose of the present study was to investigate the molecular mechanism by which methylsulfonylmethane (MSM) inhibits breast cancer growth in mice xenografts. MSM is an organic sulfur-containing natural compound without any toxicity. In this study, we demonstrated that MSM substantially decreased the viability of human breast cancer cells in a dose-dependent manner. MSM also suppressed the phosphorylation of STAT3, STAT5b, expression of IGF-1R, HIF-1α, VEGF, BrK, and p-IGF-1R and inhibited triple-negative receptor expression in receptor-positive cell lines. Moreover, MSM decreased the DNA-binding activities of STAT5b and STAT3, to the target gene promoters in MDA-MB 231 or co-transfected COS-7 cells. We confirmed that MSM significantly decreased the relative luciferase activities indicating crosstalk between STAT5b/IGF-1R, STAT5b/HSP90α, and STAT3/VEGF. To confirm these findings in vivo, xenografts were established in Balb/c athymic nude mice with MDA-MB 231 cells and MSM was administered for 30 days. Concurring to our in vitro analysis, these xenografts showed decreased expression of STAT3, STAT5b, IGF-1R and VEGF. Through in vitro and in vivo analysis, we confirmed that MSM can effectively regulate multiple targets including STAT3/VEGF and STAT5b/IGF-1R. These are the major molecules involved in tumor development, progression, and metastasis. Thus, we strongly recommend the use of MSM as a trial drug for treating all types of breast cancers including triple-negative cancers
    corecore