476 research outputs found

    Evaluation of Braided Stiffener Concepts for Transport Aircraft Wing Structure Applications

    Get PDF
    Braided composite materials have potential for application in aircraft structures. Stiffeners, wing spars, floor beams, and fuselage frames are examples where braided composites could find application if cost effective processing and damage requirements are met. Braiding is an automated process for obtaining near-net shape preforms for fabrication of components for structural applications. Previous test results on braided composite materials obtained at NASA Langley indicate that damage tolerance requirements can be met for some applications. In addition, the braiding industry is taking steps to increase the material through-put to be more competitive with other preform fabrication processes. Data are presented on the compressive behavior of three braided stiffener preform fabric constructions as determined from individual stiffener crippling test and three stiffener wide panel tests. Stiffener and panel fabrication are described and compression data presented for specimens tested with and without impact damage. In addition, data are also presented on the compressive behavior of the stitched stiffener preform construction currently being used by McDonnell Douglas Aerospace in the NASA ACT wing development program

    Imprints, Vol. 2

    Get PDF
    Imprints is the official publication for Sigma Tau Delta, the honorary English fraternity. The editors welcome creative works submitted by contributors and also publish winners of the annual T. E. Ferguson Writing Contest. Especially welcome are poems, fiction pieces and essays of no more than 5,000 words in length. At this time we would like to express our gratitude to David Whitescarver, Sigma Tau Delta faculty advisor, for his unrelenting optimism and valuable help in the preparation of this journal

    Radiation Performance of 1 Gbit DDR SDRAMs Fabricated in the 90 nm CMOS Technology Node

    Get PDF
    We present Single Event Effect (SEE) and Total Ionizing Dose (TID) data for 1 Gbit DDR SDRAMs (90 nm CMOS technology) as well as comparing this data with earlier technology nodes from the same manufacturer

    Actionable, Pathogenic Incidental Findings in 1,000 Participants’ Exomes

    Get PDF
    The incorporation of genomics into medicine is stimulating interest on the return of incidental findings (IFs) from exome and genome sequencing. However, no large-scale study has yet estimated the number of expected actionable findings per individual; therefore, we classified actionable pathogenic single-nucleotide variants in 500 European- and 500 African-descent participants randomly selected from the National Heart, Lung, and Blood Institute Exome Sequencing Project. The 1,000 individuals were screened for variants in 114 genes selected by an expert panel for their association with medically actionable genetic conditions possibly undiagnosed in adults. Among the 1,000 participants, 585 instances of 239 unique variants were identified as disease causing in the Human Gene Mutation Database (HGMD). The primary literature supporting the variants’ pathogenicity was reviewed. Of the identified IFs, only 16 unique autosomal-dominant variants in 17 individuals were assessed to be pathogenic or likely pathogenic, and one participant had two pathogenic variants for an autosomal-recessive disease. Furthermore, one pathogenic and four likely pathogenic variants not listed as disease causing in HGMD were identified. These data can provide an estimate of the frequency (∼3.4% for European descent and ∼1.2% for African descent) of the high-penetrance actionable pathogenic or likely pathogenic variants in adults. The 23 participants with pathogenic or likely pathogenic variants were disproportionately of European (17) versus African (6) descent. The process of classifying these variants underscores the need for a more comprehensive and diverse centralized resource to provide curated information on pathogenicity for clinical use to minimize health disparities in genomic medicine

    Interrater reliability of motor severity scales for hemifacial spasm

    Get PDF
    To compare the inter-rater reliability (IRR) of five clinical rating scales for video-based assessment of hemifacial spasm (HFS) motor severity. We evaluated the video recordings of 45 HFS participants recruited through the Dystonia Coalition. In Round 1, six clinicians with expertise in HFS assessed the participants\u27 motor severity with five scales used to measure motor severity of HFS: the Jankovic rating scale (JRS), Hemifacial Spasm Grading Scale (HSGS), Samsung Medical Center (SMC) grading system for severity of HFS spasms (Lee\u27s scale), clinical grading of spasm intensity (Chen\u27s scale), and a modified version of the Abnormal Involuntary Movement Scale (Tunc\u27s scale). In Round 2, clinicians rated the same cohort with simplified scale wording after consensus training. For each round, we evaluated the IRR using the intraclass correlation coefficient [ICC (2,1) single-rater, absolute-agreement, 2-way random model]. The scales exhibited IRR that ranged from poor to moderate ; the mean ICCs were 0.41, 0.43, 0.47, 0.43, and 0.65 for the JRS, HSGS, Lee\u27s, Chen\u27s, and Tunc\u27s scales, respectively, for Round 1. In Round 2, the corresponding IRRs increased to 0.63, 0.60, 0.59, 0.53, and 0.71. In both rounds, Tunc\u27s scale exhibited the highest IRR. For clinical assessments of HFS motor severity based on video observations, we recommend using Tunc\u27s scale because of its comparative reliability and because clinicians interpret the scale easily without modifications or the need for consensus training
    corecore