1,703 research outputs found

    A Secure and Flexible FPGA–based Blockchain System for IIoTs

    Get PDF
    Blockchain is a promising solution for Industry 4.0 due to its traceability and immutability. However, blockchain itself does not guarantee the input data integrity. The tampered data from an endpoint device can be a significant problem because it may result in a cascaded negative effect on the whole smart factory operations. In this paper, we propose an FPGA-based private blockchain system for IIoTs, where the transaction generation is performed inside the FPGA in an isolated and enclaved manner. For the key confidentiality and transaction integrity, the proposed system utilizes a PUF, soft processor, and tightly coupled sensor connections inside the FPGA fabric. Since all the critical operations are hidden under the hood, adversaries even with the root privilege cannot intervene in the transaction generation process. The implemented IIoT device provides 33 transactions per minute and consumes a 191 mW of power

    Chirality-Selective Excitation of Coherent Phonons in Carbon Nanotubes

    Full text link
    Using pre-designed trains of femtosecond optical pulses, we have selectively excited coherent phonons of the radial breathing mode of specific-chirality single-walled carbon nanotubes within an ensemble sample. By analyzing the initial phase of the phonon oscillations, we prove that the tube diameter initially increases in response to ultrafast photoexcitation. Furthermore, from excitation profiles, we demonstrate that an excitonic absorption peak of carbon nanotubes periodically oscillates as a function of time when the tube diameter undergoes radial breathing mode oscillations.Comment: 4 pages, 4 figure

    Monoclinic and Correlated Metal Phase in VO_2 as Evidence of the Mott Transition: Coherent Phonon Analysis

    Full text link
    In femtosecond pump-probe measurements, the appearance of coherent phonon oscillations at 4.5 THz and 6.0 THz indicating the rutile metal phase of VO_2 does not occur simultaneously with the first-order metal-insulator transition (MIT) near 68^oC. The monoclinic and correlated metal(MCM) phase between the MIT and the structural phase transition (SPT) is generated by a photo-assisted hole excitation which is evidence of the Mott transition. The SPT between the MCM phase and the rutile metal phase occurs due to subsequent Joule heating. The MCM phase can be regarded as an intermediate non-equilibrium state.Comment: 4 pages, 2 figure

    Magnetization-induced optical nonlinearity in ferromagnetic GaMnAs

    No full text
    International audienceWe report the observation of a coherent nonlinear signal in pump-probe experiments on a ferromagnetic GaMnAs. The coherent signal, which is originating due to coherent interaction between pump and probe beams, depends on the polarization configuration of each beam and follows the sample magnetization as it changes with the applied magnetic field and/or the sample temperature. Cop. 2007 American Institute of Physics

    SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data Processing and Bitstream Protection

    Get PDF
    This paper proposes SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data Processing and Bitstream Protection. SafeDB provides a comprehensive and systematic hardware-based security framework from the bitstream protection to data confidentiality, especially for the cloud environment. The AES key shared between FPGA and client for the bitstream encryption is generated in hard-wired logic using PKI and ECC. The data security is assured by the enclaved processing with encrypted data, meaning that the encrypted data is processed inside the FPGA fabric. Thus, no one in the system is able to look into clients\u27 data because plaintext data are not exposed to memory and/or memory-mapped space. SafeDB is resistant not only to the side channel attack but to the attacks from malicious insiders. We have constructed an 8-node cluster prototype with Zynq UltraScale+ FPGAs to demonstrate the security, performance, and practicability

    KMT-2016-BLG-2052L: Microlensing Binary Composed of M Dwarfs Revealed from a Very Long Time-scale Event

    Full text link
    We present the analysis of a binary microlensing event KMT-2016-BLG-2052, for which the lensing-induced brightening of the source star lasted for 2 seasons. We determine the lens mass from the combined measurements of the microlens parallax \pie and angular Einstein radius \thetae. The measured mass indicates that the lens is a binary composed of M dwarfs with masses of M1∼0.34 M⊙M_1\sim 0.34~M_\odot and M2∼0.17 M⊙M_2\sim 0.17~M_\odot. The measured relative lens-source proper motion of μ∼3.9 mas yr−1\mu\sim 3.9~{\rm mas}~{\rm yr}^{-1} is smaller than ∼5 mas yr−1\sim 5~{\rm mas}~{\rm yr}^{-1} of typical Galactic lensing events, while the estimated angular Einstein radius of \thetae\sim 1.2~{\rm mas} is substantially greater than the typical value of ∼0.5 mas\sim 0.5~{\rm mas}. Therefore, it turns out that the long time scale of the event is caused by the combination of the slow μ\mu and large \thetae rather than the heavy mass of the lens. From the simulation of Galactic lensing events with very long time scales (tE≳100t_{\rm E}\gtrsim 100 days), we find that the probabilities that long time-scale events are produced by lenses with masses ≥1.0 M⊙\geq 1.0~M_\odot and ≥3.0 M⊙\geq 3.0~M_\odot are ∼19%\sim 19\% and 2.6\%, respectively, indicating that events produced by heavy lenses comprise a minor fraction of long time-scale events. The results indicate that it is essential to determine lens masses by measuring both \pie and \thetae in order to firmly identify heavy stellar remnants such as neutron stars and black holes.Comment: 9 pages, 11 figure

    KMT-2016-BLG-1107: A New Hollywood-Planet Close/Wide Degeneracy

    Get PDF
    We show that microlensing event KMT-2016-BLG-1107 displays a new type of degeneracy between wide-binary and close-binary Hollywood events in which a giant-star source envelops the planetary caustic. The planetary anomaly takes the form of a smooth, two-day "bump" far out on the falling wing of the light curve, which can be interpreted either as the source completely enveloping a minor-image caustic due to a close companion with mass ratio q=0.036q=0.036, or partially enveloping a major-image caustic due to a wide companion with q=0.004q=0.004. The best estimates of the companion masses are both in the planetary regime (3.3−1.8+3.5 Mjup3.3^{+3.5}_{-1.8}\,M_{\rm jup} and 0.090−0.037+0.096 Mjup0.090^{+0.096}_{-0.037}\,M_{\rm jup}) but differ by an even larger factor than the mass ratios due to different inferred host masses. We show that the two solutions can be distinguished by high-resolution imaging at first light on next-generation ("30m") telescopes. We provide analytic guidance to understand the conditions under which this new type of degeneracy can appear.Comment: 23 pages, 7 figures, accepted for publication in A

    KMT-2018-BLG-1990Lb: A Nearby Jovian Planet From A Low-Cadence Microlensing Field

    Get PDF
    We report the discovery and characterization of KMT-2018-BLG-1990Lb, a Jovian planet (mp=0.57−0.25+0.79 MJ)(m_p=0.57_{-0.25}^{+0.79}\,M_J) orbiting a late M dwarf (M=0.14−0.06+0.20 M⊙)(M=0.14_{-0.06}^{+0.20}\,M_\odot), at a distance (D_L=1.23_{-0.43}^{+1.06}\,\kpc), and projected at 2.6±0.62.6\pm 0.6 times the snow line distance, i.e., a_{\rm snow}\equiv 2.7\,\au (M/M_\odot), This is the second Jovian planet discovered by KMTNet in its low cadence (0.4 hr−10.4\,{\rm hr}^{-1}) fields, demonstrating that this population will be well characterized based on survey-only microlensing data.Comment: 24 pages, 7 figures, 4 table
    • …
    corecore