
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Computer Science Faculty Publications and
Presentations College of Engineering and Computer Science

8-2019

SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data

Processing and Bitstream Protection Processing and Bitstream Protection

Han-Yee Kim

Rohyoung Myung

Boeui Hong

Heonchang Yu

Taeweon Suh

See next page for additional authors

Follow this and additional works at: https://scholarworks.utrgv.edu/cs_fac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Chalk, C., Martinez, E., Schweller, R. et al. Optimal staged self-assembly of linear assemblies. Nat Comput
18, 527–548 (2019). https://doi.org/10.1007/s11047-019-09740-y

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
ScholarWorks @ UTRGV. It has been accepted for inclusion in Computer Science Faculty Publications and
Presentations by an authorized administrator of ScholarWorks @ UTRGV. For more information, please contact
justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cs_fac
https://scholarworks.utrgv.edu/cecs
https://scholarworks.utrgv.edu/cs_fac?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fcs_fac%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

Authors Authors
Han-Yee Kim, Rohyoung Myung, Boeui Hong, Heonchang Yu, Taeweon Suh, Lei Xu, and Weidong Shi

This article is available at ScholarWorks @ UTRGV: https://scholarworks.utrgv.edu/cs_fac/33

https://scholarworks.utrgv.edu/cs_fac/33

Han-Yee Kim, Rohyoung Myung,
Boeui Hong, Heonchang Yu, and

Taeweon Suh*
Computer Science and Engineering

Korea University
Seoul, Republic of Korea

Email: {hanyeemy, mry1811, boyhong,
yuhc, suhtw}@korea.ac.kr

Lei Xu
Department of Computer Science

University of Texas Rio Grande Valley
Brownsville, TX, USA

Email: xuleimath@gmail.com

Weidong Shi
Department of Computer Science

University of Houston
Houston, TX, USA

Email: wshi3@uh.edu

Abstract—This paper proposes SafeDB: Spark Acceleration on
FPGA Clouds with Enclaved Data Processing and Bitstream
Protection. SafeDB provides a comprehensive and systematic
hardware-based security framework from the bitstream
protection to data confidentiality, especially for the cloud
environment. The AES key shared between FPGA and client for
the bitstream encryption is generated in hard-wired logic using
PKI and ECC. The data security is assured by the enclaved
processing with encrypted data, meaning that the encrypted
data is processed inside the FPGA fabric. Thus, no one in the
system is able to look into clients’ data because plaintext data
are not exposed to memory and/or memory-mapped space.
SafeDB is resistant not only to the side channel attack but to the
attacks from malicious insiders. We have constructed an 8-node
cluster prototype with Zynq UltraScale+ FPGAs to demonstrate
the security, performance, and practicability.

Keywords—FPGA as a service, Bitstream protection,
Enclaved data processing, Spark big data processing

I. INTRODUCTION

Clouds are attractive platforms for tasks that require large
amounts of resources because of its scalability, elasticity,
flexibility, and cost savings. Compute resources and storage
can be easily scaled up and down in a pay-as-you-go manner.
The clouds also provide convenient big data processing
environment such as MapReduce and Spark for the broad
adoption from the public. However, customers with private
and/or sensitive data may be reluctant to use the clouds due to
the security concern. Most big data processing frameworks
incorporate some security features, which are typically based
on cryptography [1]. Nonetheless, the data confidentiality is
not assured once the key for the crypto operation is leaked.
One extreme way of protecting data in software-only
processing is to use fully homomorphic encryption [2]. It
allows for directly processing cipher-text data without
decryption, but it is too expensive in terms of the processing
time. With the growing concerns for security, processor
vendors such as Intel, AMD, and ARM are shipping their
products with Trusted Execution Environment (TEE) called
SGX, SME, and TrustZone. However, as revealed in Spectre
and Meltdown cases [3, 4], microarchitecture weaknesses are
exploited to disarm the security and extract data in main
memory.

Field-Programmable Gate Arrays (FPGAs) are being
emerged as one of the major resources in clouds because data
processing can be accelerated with customized hardware
engines. These days, renowned cloud providers are already
offering FPGAs in their premises. For example, Amazon EC2
F1 and Huawei FACS provide Xilinx’s Virtex UltraScale+
FPGAs, whereas Microsoft Azure offers Intel's Arria-10 GX
FPGAs. FPGAs are configured with the bitstream that is a
low-level representation of hardware design. The bitstream is
susceptible to similar security attacks to software, including
unauthorized copy, IP theft, reverse-engineering, and
tampering [5]. If the hardware design is reverse-engineered
and tampered from the bitstream, an attacker could peek the
data being processed and transfer it through a covert channel.
To cope with this problem, modern FPGAs provide the
bitstream protection mechanisms mostly based on the AES
encryption, and the encryption key is stored in on-board
storage. In the cloud environment, the bitstream protection is
susceptible to the man-in-the-middle (MITM) attack. It is
because the key along with the encrypted bitstream should be
sent remotely from customers to the clouds for the FPGA
configuration.

In this paper, we propose SafeDB, a Spark-based
comprehensive and systematic framework for security and
data processing acceleration in FPGA-based clouds. For the
bitstream protection, SafeDB proposes a hard-wired logic in
FPGAs for the key exchange and authentication using the
Public Key Infrastructure (PKI). For the data confidentiality,
it implements a fully enclaved processing of application
kernels inside FPGA fabric, taking and emitting only
encrypted data. Thus, the plaintext data are never exposed to
memory-mapped space. We estimated the hardware cost of
implementing the proposed bitstream protection scheme. For
the performance evaluation, we have constructed a complete
SafeDB cluster system with eight Zynq UltraScale+ devices
[6]. The experiments show that SafeDB achieves the
performance improvement of real applications by up to 1.36x.

The remainder of this paper is organized as follows:
Section II introduces background information. Section III
summarizes the related works. Section IV details the proposed
architecture with its security analysis. In Section V, we
elaborate on the detailed implementation. Section VI shows
the experimental results and their analysis. We discuss the

SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data Processing and
Bitstream Protection

practicability and usability of the SafeDB in Section VII. We
finally conclude our paper in Section VIII.

II. BACKGROUND

A. Spark Overview
Spark is one of the most prevalent frameworks for big data

processing with fault tolerance support and in-memory cluster
computing. It provides high-level APIs in Java, Scala, Python
and R. With the APIs, it is convenient to develop applications
without requiring much of customization. Spark aims at
improving the MapReduce framework in terms of the
flexibility via high-level APIs and the performance by
minimizing accesses to the secondary storage. Spark supports
batch processing and provides a micro-batch based streaming
model. Its framework also offers diverse tools including Spark
SQL for the structured data processing, MLlib for the machine
learning, GraphX for the graph processing, and Spark
streaming for real-time processing. For performance, it
especially introduces a new abstract data structure called
resilient distributed dataset (RDD). The RDD is a read-only
multiset of data items normally residing in memory. RDD can
be created from data in secondary storage or other RDDs. It
can act as a working set of data processing. Various
transformations such as data-accumulation-by-key can be
applied to RDDs. The sequence of RDD operations is tracked
in Spark for fault tolerance.

B. Bitstream Protection in Modern FPGAs
Modern FPGAs are equipped with hard-wired bitstream

protection modules where the AES, a symmetric
cryptography, is typically used for the bitstream encryption.
The symmetric key itself is also encrypted and stored in on-
board storage. Table I summarizes the encryption methods
and key storages in modern FPGAs from major vendors.

TABLE I. SECURITY FEATURES OF MODERN FPGAS

Security
Features

Xilinx Intel Microsemi

Virtex /
Kintex

UltraScale+

Zynq
UltraScale+

Arria-10
GX / SX

Stratix-10
GX / SX SmartFusion2

Bitstream
encryption

AES-GCM
256

AES-GCM
256

AES-GCM
256

AES-GCM
256

AES-GCM
128/256 with

ECDH

Key
Storage

BBRAM
eFUSE

BBRAM
eFUSE

PUF

BBRAM
eFUSE

BBRAM
eFUSE

PUF

FLASH
PUF

Since the bitstream itself is shielded by the AES
encryption, the remaining issue is the AES key protection. As
shown in Table I, Physically Unclonable Function (PUF) is
especially incorporated in the major devices and used for the
key protection. The PUF takes advantage of semiconductor
process variations such as oxide thickness and channel length.
It is used as a digital fingerprint of each device. The PUF
generates a unique response (output) for each challenge
(input). There are two PUF-based key protection schemes in
FPGAs; The first one directly generates the encrypted key
with the PUF output and stores the result (encrypted key) in
on-board non-volatile memory. At the time of the FPGA

configuration with the encrypted bitstream, the encrypted key
in the non-volatile memory is decrypted by the PUF’s output
and used for the bitstream decryption. This scheme is applied
to Zynq UltraScale+. The second scheme is based on the key
exchange protocol with Diffie-Hellman algorithms where the
‘shared secret’ between user and FPGA is generated. With its
own private key and the counterpart’s public key, both the
user and FPGA can generate the same AES key. On the FPGA
side, the private key of each FPGA is the PUF output and its
corresponding public key is released to the user. At the time
of the FPGA configuration with the encrypted bitstream, the
shared AES key is generated inside the FPGA and used for the
bitstream decryption. This scheme is used in the Microsemi
SmartFusion2.

III. RELATED WORKS

There are several studies on securing big data workload.
Zerfos [7] proposed a secure distributed file system (SDFS)
for Hadoop to provide data-at-rest protection. SDFS can read
and write encrypted data on behalf of MapReduce
applications using keys that are distributed and controlled by
customers. Nevertheless, software-based data-at-rest security
has drawbacks in that the plaintext is inevitably exposed in
memory space and the performance can negatively be affected
by the cryptographic operation. Schuster [8] proposed
Verifiable Confidential Cloud Computing (VC3) system
using Intel SGX. The VC3 ensures that the MapReduce
applications are confidentially and verifiably executed under
untrusted cloud environments. However, as demonstrated in
SgxPectre [9], the SGX can be compromised by exploiting the
architectural vulnerability.

There are case studies for big data processing acceleration
using reconfigurable hardware. Shan et al [10] implemented a
MapReduce framework on FPGA, referred to as FPMR,
where the whole process of the mapper and reducer including
scheduler is executed inside the FPGA. Chen et.al. presented
the design of FPGA-based Spark acceleration for DNA
sequencing [11]. Morcel et.al [12] implemented an FPGA-
based accelerator for the distributed training of deep
convolutional neural network with Spark. These prior works
have focused only on acceleration without considering the
data confidentiality.

There are prior works regarding the bitstream protection
for the remote FPGAs in clouds. Eguro et al [13] proposed a
trusted third party based bitstream protection scheme. The
proposal relies on the Trusted Authority (TA) for key
management. More specifically, TA undertakes to register
AES keys for all FPGA boards before shipping to the clouds,
encrypting all the bitstreams requested from users, and
sending them to the clouds. This method is susceptible to
MITM attack when sending bitstreams to the TA. Genssler et
al [14] proposed a secure bitstream protection scheme and its
end-to-end connection protocol between virtualized FPGA
and client. On the FPGA fabric, client’s encrypted bitstream
is decrypted and configured to a certain area of FPGA fabric
via partial reconfiguration technology. To the best of our
knowledge, SafeDB is the first comprehensive and systematic
framework for security and acceleration for FPGA-as-a-
Service (FaaS). It covers from the bitstream protection to the

data confidentiality with the real implementation and
evaluation on an off-the-shelf FPGA based cluster.

IV. SAFEDB ARCHITECTURE AND ITS SECURITY
ANALYSIS

Fig 1. SafeDB overview

A. Threat Model
The Cloud Service Provider (CSP) offers FPGAs and we

assume that the FPGAs are trusted and their vendors have a
complete monitoring mechanism to prevent adversaries from
influencing the device manufacturing process. On the CSP
side, there may be malicious insiders or outsiders who want to
learn about the data being processed. They may sneak into the
cloud system and try to steal the clients’ private and/or
sensitive information via illegal access. They may even try to
tamper hardware bitstream to figure out sensitive data. The

clients have large amounts of personal and/or sensitive data to
manipulate and thus need a big data processing platform that
guarantees no information leakage both in the perspective of
data and its functional behavior. Simply speaking, no one on
the CSP side should be able to learn about customers' data and
its hardware design.

B. SafeDB System Architecture
SafeDB provides a systematic hardware-based mechanism

from the bitstream protection to data security. Fig. 1 shows the
operational overview of SafeDB where the data and bitstream
flow from a client to CSP is depicted. The client has data to
process and application to run, which are sent to CSP for
execution. For security, data is encrypted with the client’s
AES key and sent to CSP. The application is divided into two
parts: house-keeping and kernel codes. The kernel code,
which actually processes the client’s data, is automatically
translated to the hardware by CAD tools and will later be
executed inside FPGA on CSP. The house-keeping code is
executed in software on CSP. For security, FPGA takes
encrypted data, decrypts it, executes the kernel and finally
encrypts the output for passing it externally. Thus, the
bitstream is prepended with the AES decryption module and
appended with the AES encryption module, which is
performed in the SafeDB framework. To call the hardware-
translated kernel in runtime, the client should prepare
firmware with the house-keeping code. The CAD tool helps
generate the firmware. On the CSP side, there is a
management tool called FPGA-as-a-Service (FaaS) software
that mediates an end-to-end connection between FPGA and
the client for the initial configuration. It performs simple

Fig 2. Basic components and operational procedure of bitstream protection in SafeDB

communication operations such as passing metadata, for
bitstream protection.

C. Bitstream Protection in SafeDB
As in modern FPGAs, the bitstream itself is encrypted by

AES on the client side. Then, the AES key should be safely
shared with FPGAs on the clouds. For the AES key sharing,
the SafeDB utilizes the PKI and ECC algorithms. The PKI is
an asymmetric key based security system. In the PKI system,
a trusted party called Certificate Authority (CA) guarantees
that a public key is genuine by issuing a certificate, which is
signed by the CA’s private key. Then, each party is able to
authenticate the public key of its counterpart.

The hardware components and operation flow required for
the key sharing are depicted in Fig. 2. The PRNG is used to
generate diverse inputs (challenges) to PUF. The PUF’s
output (response) is used as a private key (Then, its
corresponding public key () is generated with . Note
that only public key is released to the outside world. Initially,
both client and FPGA generate their own private keys (,

), and their corresponding public keys (, are
computed from the ECDH public key generator. Then, the
FPGA identification and its public key are transferred to CA
(), and the client also sends its public key to CA (). The
FPGA chip ID from the manufacturer can be used as the
FPGA identification. Then, CA issues and sends an ECDSA
certificate to each party (). The CA-signed certificate
contains the ID, public key, and timestamp for validity. When
a client wants to use FPGAs, he/she sends a request to the CSP
with the CA-signed certificate (). Then, the FaaS software
assigns several boards and sends the corresponding CA-
signed certificates to the requestor (). On each party, the
counterpart’s certificate is verified in the ECDSA verification
module With its own private key and its
counterpart's public key, each party generates the same shared
secret. Finally, the AES key used for the bitstream encryption
is generated from the KDF with the shared secret. With the
derived AES key, the client generates the encrypted bitstream
() and sends it to CSP. FPGA on the CSP then decrypts
the received bitstream with the same derived AES key ().
Because all critical information is hidden in hard macro blocks
inside FPGA, the proposed scheme has no surface for rogues
to steal and/or eavesdrop AES key and/or private key on the
CSP side.

D. Data Confidentiality in SafeDB
For the data confidentiality, SafeDB proposes a fully

enclaved processing by migrating Spark application kernel
functions to the FPGA fabric in an isolated manner. All the
data-at-rest are stored in memory or secondary storage in
encrypted form even it is intermediate data. To take the
encrypted data for processing and emit the encrypted output
after processing, one AES crypto engine is prepended on the
front side of the application kernels, and another is appended
on the rear side. Note that the AES key for the data protection
is different from the AES key for the bitstream protection; The
latter is distinct according to the FPGAs because the PUF

inside each FPGA generates a unique private key. The client
would want to use the same AES key for data regardless of the
FPGAs. The AES key for data is included in the bitstream.

The detailed operational procedure and hardware/software
co-operation for data confidentiality is depicted in Fig. 3. First,
a Spark application partitions the encrypted data and calls the
firmware to execute the application kernels ported into the
FPGA fabric. The firmware contains the device drivers for the
application kernel function. The firmware takes an argument,
which is either a path to the input file or input data itself. Then,
the partitioned encrypted data in memory is supplied to the
AES decryption module in the FPGA fabric via DMA. After
the decryption, the application kernel performs the data
processing. Then, its output is passed to the AES encryption
module. Finally, the DMA carries out the encrypted data
transfer from the FPGA fabric to memory.

Fig 3. Basic components and operational procedure for data
confidentiality in SafeDB

E. Security Analysis
In SafeDB, it is not feasible to look into the plaintext data.

It is because the data is stored in an encrypted form all the time
in memory, and the data processing occurs inside the FPGA
fabric. Furthermore, the bitstream is also protected by the
hard-wired IPs described in Section IV-C. It means that
known software attacks [15] are essentially blocked and
prevented. Side channel attack (SCA) may be attempted to
extract key information from AES modules inside FPGA.
There are two kinds of attack scenarios in SCA: Timing
analysis and Power analysis. In the timing-based attack [16],
attackers measure the time to perform a certain operation. By
measuring the execution times according to parameters, the
attackers can speculate the stored key. However, the AES
algorithm in SafeDB is implemented as hardware and there is
no memory-mapped register for storing the intermediate
outcome of crypto operations. In addition, the implemented
AES engine consumes a constant amount of time regardless
of inputs. Therefore, the timing attack is not feasible. The
power analysis based SCA may be carried out if attackers
know the information gathered from the power trace with
knowledge about the implementation. The power trace is
collected by physically connecting a power meter to the
system. There is a published power analysis attack against a
Virtex 800 FPGA [17]. However, the power-based SCA
requires prior knowledge about the hardware implementation
and its location. It is not virtually possible to perform this kind

of attacks in SafeDB because the bitstream is created and
encrypted from the client.

V. SAFEDB CLUSTER SYSTEM IMPLEMENTATION

A. Experiment Environment
We used eight ZCU102 boards for cluster setup. Each

board has Zynq UltraScale+ where Cortex-A53 quad-core
processor with 1.5 GHz, 4GB DDR4 RAM, and a number of
programmable logic cells are contained. Fig. 4 shows a picture
of a constructed 8-node cluster. The eight nodes are connected
through Ethernet via a switch. SDSoC 2016.4v [18], a CAD
tool from Xilinx, is used for hardware and software
implementation. The SDSoC provides a capability of the
automated system-level integration for C/C++/OpenCL code,
targeting Zynq programmable SoCs. The system-level
integration includes software-to-hardware translation, device
driver generation, and kernel creation. The SDSoC allows
users to specify software functions to be translated to
hardware. For the maximal performance and throughput that
FPGA allows, it provides directives that can be annotated in
C/C++ source code.

Fig 4. Cluster prototype with eight Zynq UltraScale+ boards

B. Cluster Setup with Linux Kernel, File System, and Boot
Image Creation

Fig 5. Hardware bitstream and firmware generation flow in SafeDB
prototype with Zynq Ultrascale+

Fig. 5 shows the bitstream and software generation flow
for the experiments with a prototyped SafeDB system. We
implemented AES software for data protection, which will be
provided to clients. For the hardware implementation with
SDSoC, application kernel functions and AES are marked for
the hardware translation. Then, SDSoC generates a hardware
description file (hdf) including bitstream. With the hdf file,
PetaLinux tool [19] can build a customized linux kernel image.
The SDSoC also build an elf file, which is firmware. The elf
is included in each target application program. We used the
Ubuntu 16.04 ARMv8 file system from Ubuntu official
repository and installed Spark 2.2.

C. Target Applications
We used three benchmark programs to evaluate the

SafeDB in terms of performance and hardware utilization:
Word Count, Sobel Filter, and Logistic Regression. The
benchmark details are elaborated as follows:
• Word Count (WC): WC is one of the most commonly used

benchmarks for big data processing. It reads input data,
splits each word, and creates a key-value pair. Then, all the
intermediate values are accumulated if the key (word) is
the same. The complexity of WC is . The WC
hardware module processes a 2MB data per execution.

• Sobel filter (SF): The Sobel operator is used in image
processing and computer vision, particularly for detecting
edges. First, each image is split into window-sized
partitions. In our implementation, each original image was
split into 1024x512 partitions. Then, the edge detection is
performed with the 3x3 kernel, to compute the derivative
approximations of image convolution. The complexity of
SF is .

• Logistic regression (LR): LR is widely used to predict a
binary response. The binary logistic model is used to
estimate the probability of a binary response based on one
or more predictor variables. LR is used in various fields,
especially machine learning. In this application, the Spark
splits encrypted input data by 2MB, which has 1024 data
sets. Each set has 512 floating-point data representing 512
kinds of features. In the hardware module, the weight
update and regularization occur continuously. The
complexity of implemented LR is .

D. Bitstream Protection Hardware with PUF
We have implemented hardware modules for bitstream

protection described in Section IV-C with Vivado. Based on
the open-source software, we have made modifications for
high-level synthesis and generated a PRNG, ECDH public key
& shared secret generator, and ECDSA verification module.
The PRNG is based on a linear feedback shift register (LFSR).
B-571(sect571r1) parameters are selected for the ECDH and
ECDSA implementation. The B-571 has 571-bit private key
and 1142-bit public key for the ECDH handshaking. We set
the same 571-bit output length for both PUF and ECDH
shared secret. The ECDSA module is also fitted to take the
1142-bit public key. The KDF module takes the 571-bit
shared secret and uses SHA256 to generate the 256-bit AES
key. It is called the HMAC-based extract-and-expand key
derivation function (HKDF). For the PUF, we used

Anderson’s soft PUF [20]. It takes advantage of the timing
delay variation between two carry-chained lookup tables
when used as the shift register. In the implementation, the
XOR-based challenge and response framework is applied to
get the diverse outputs from the PUF. The PUF is designed via
HDL. The hardware cost for each module is estimated in
Section VI.

VI. SAFEDB EVALUATIONS

A. Resource Utilization and Performance of Hardware
Components
Table II summarizes the resource utilization and

performance of each hardware module for bitstream
protection. Block RAMs (BRAMs) are used as internal
memory in Xilinx FPGA. Digital Signal Processing units
(DSPs) are typically used when translating signal processing
algorithms with multiply-accumulation (MAC) operations.
Flip-flops (FFs) and Lookup Tables (LUTs) are used for
general logic designs. Overall, the bitstream protection
hardware occupies 4.61% of BRAMs, 4.69% of FFs, and
17.72% of LUTs of the programmable logic. When it comes
to the performance, all modules are operating at 100MHz. The
PRNG and the PUF take 1 cycle and AES256 take 520 cycles
for execution, whereas the execution times of ECDH,
ECDSA, and KDF modules are dynamically determined
according to inputs.

TABLE II. RESOURCE UTILIZATION AND EXECUTION TIME OF
HARDWARE COMPONENTS FOR BITSTREAM PROTECTION

Hardware
Components

#BRAMs
(18Kbit)

#DSPs
(48E) #FFs #LUTs Execution

Time

PRNG
100MHz

0
(0%)

0
(0%)

0
(0%)

522
(0.19%)

1 Cycle
(10ns)

PUF
100MHz

0
(0%)

0
(0%)

1,168
(0.21%)

2,170
(0.79%)

1 Cycle
(10ns)

ECDH
Public key
generator
100MHz

20
(1.10%)

0
(0%)

4,476
(0.82%)

12,926
(4.72%) N/A

ECDH
Shared secret

generator
100MHz

26
(1.43%)

0
(0%)

4,200
(0.77%)

13,187
(4.81%) N/A

ECDSA
Verification

module
100MHz

22
(1.21%)

0
(0%)

3,362
(0.61%)

10,790
(3.94%) N/A

KDF
100MHz

8
(0.44%)

0
(0%)

1,056
(0.19%)

3,987
(1.45%) N/A

AES256
decryption
100Mhz

8
(0.44%)

0
(0%)

11,457
(2.09%)

4,990
(1.82%)

520 cycles
(5,200ns)

Table III summarizes the resource utilization and
performance of each hardware component for data processing.
The WC application kernel consumes relatively low hardware
resources due to the simplicity of the application. In SF and
LR, BRAMs are mainly used in the hardware translation
whereas DSPs, FFs, and LUTs are not much utilized in the
three application kernels. After the hardware translation, we
have measured the maximum operating frequency of the

hardware system, which turned out to be 200MHz due to the
timing constraints. The execution times of WC and SF
hardware kernels are roughly 10.49ms and 80.86ms,
respectively. The execution time of LR varies around
10.81sec because a certain internal loop can finish when the
break condition is met. The AES128 encryption and
decryption take about 0.2 s for a single execution separately.

TABLE III. RESOURCE UTILIZATION AND EXECUTION TIME OF
HARDWARE COMPONENTS FOR DATA PROCESSING

Hardware
Components

#BRAMs
(18Kbit)

#DSPs
(48E) #FFs #LUTs Execution Time

WC kernel
200MHz

2
(0.11%)

0
(0%)

714
(0.13%)

520
(0.19%)

2,097,154 cycles
(10,485,770ns)

SF kernel
200MHz

1,698
(93.09%)

16
(0.63%)

13,367
(4.88%)

16,446
(3.00%)

16,172,253 cycles
(80,861,265ns)

LR kernel
200MHz

933
(51.15%)

22
(0.87%)

3,877
(0.71%)

8,104
(2.96%)

2,162,181,647
cycles

(10,810,908,235ns)

AES128
encryption
200Mhz

0
(0%)

0
(0%)

6,865
(1.25%)

3,300
(1.20%)

426 cycles
(2,130ns)

AES128
decryption
200Mhz

8
(0.44%)

0
(0%)

11,455
(2.09%)

4,982
(1.82%)

384 cycles
(1,920ns)

B. Resource Utilization, Power Consumption, and
Performance of a Single Node
Table IV shows the overall resource utilization and power

consumption of final hardware systems on a single node
according to the target applications. They are different from
the ones in Table III. It is because the system interconnection
such as AXI is always required and DMA engines are
integrated for speeding up the data transfer. The FFs and
LUTs are utilized by up to 8.16 %, and 12.21%, respectively.

TABLE IV. OVERALL RESOURCE UTILIZATION AND POWER
CONSUMPTION OF TARGET APPLICATIONS ON ULTRASCALE+

Hardware
Systems

#BRAMs
(18Kbit)

#DSPs
(48E) #FFs #LUTs Power

Consumption

WC System
200MHz

143
(7.84%)

3
(0.12%)

38,543
(7.03%)

27,925
(10.19%) 4.023W

SF kernel
200MHz

1,771
(97.09%)

22
(0.87%)

42,171
(7.69%)

32,057
(11.70%) 4.772W

LR kernel
200MHz

1,055
(57.84%)

28
(1.11%)

44,703
(8.16%)

33,465
(12.21%) 4.463W

Fig. 6 shows the resource utilization breakdown of
hardware systems in the FPGA fabric except for DSP. In the
WC, the application kernel module is relatively tiny so that
AXI interface modules occupy a considerable portion of
hardware resources. Except for the WC system, the BRAMs
were mainly utilized for application kernel functions. In the
SF system, FFs and LUTs are also mainly consumed by the
application kernel function. The power consumptions for each
benchmark follow the allocated BRAM resources because the
utilization variation of the other resources is marginal.

Fig. 7 shows normalized execution times of target
applications over software-only approach, which is used as a
baseline in the experiment. The experiments were performed
by running each elf file once. We observed that, as the

algorithm complexity increases, the acceleration effect is
relatively moderate. The WC system took the benefit of
SafeDB the most by boosting performance by 25.6x over the
baseline. The SF system provides roughly an 18x performance
improvement, whereas the LR achieves a 2x performance over
the baseline. We strongly believe that it is because LR exhibits
the data locality characteristic, which takes advantage of the
caches of Cortex-A53 in the baseline.

Fig 6. Resource utilization breakdown of hardware systems according
to resource types in the FPGA fabric of Zynq UltraScale+

Fig 7. Normalized execution times of each applicaion over baseline
without Spark environment.

To measure the performance of the organized cluster, the
target applications were executed with three workload sizes:
64GB, 128GB, and 192GB. To maximize the hard-wired
processing system performance, each node executes four
threads. Note that the hard-wired processing system has four
Cortex-A53 cores. Fig. 8 shows the normalized execution
times over the baseline. The SafeDB improves performance
throughout the benchmark programs. Especially, the LR
shows the largest improvement of 1.36x with 64GB data.
However, compared with the single execution in Fig. 7, the
performance difference from the baseline is not considerable.
There are two reasons: the difference in the number of threads
and the task management scheme in Spark. First, by assigning
the tasks to four cores, the performance of the baseline was
improved dramatically by ideally up to 4x. The second reason

is the overhead in Spark task management. Spark uses a
method called the lazy evaluation, with which the execution
is not started immediately. Thus, the elf execution may be
delayed, and the impact of the overhead will be noticeable as
the execution time of the translated application kernel in
hardware becomes shorter. The pure execution times of WC
and SF are around 0.3 seconds, whereas LR takes around 11
seconds per single execution. Thus, as shown in Fig. 8, the LR
exhibits a better improvement in performance, relatively well
absorbing its overhead.

Fig 8. Normalized execution times on the organized cluster
(that is , 8 UltraScale+ boards) over baseline

VII. DISCUSSION

For security, modern FPGAs are equipped with hard-
macro IPs; Xilinx integrates Chip Security Unit (CSU) and
Intel has Secure Device Manager (SDM). SafeDB proposes
such hard-wired bitstream protection for the cloud
environment, taking advantage of ECC and PUF with the PKI
system. As reported in Section VI, the overall hardware cost
for bitstream protection is reasonably low. Therefore, we
strongly believe that the proposed solution can be easily
implemented in the FPGAs targeting for the cloud
environment.

The proposed solution can be used not only for the big data
processing purposes but for other application areas such as
Blockchain where the security demand is high. For example,
for the blockchain system with FPGAs, ECDH or ECDSA can
be implemented in the FPGA fabric, and soft PUFs can be
used to generate a random number for a private key. Even
blockchain virtual machines can be implemented in FPGA
fabric to increase security for smart contracts. It would make
the transactions on Blockchain much more secure, compared
to the software approach.

There were some design considerations when
implementing a SafeDB hardware system with automated
CAD tools such as SDSoC. While FPGAs can be used for
acceleration by parallelism, too many hardware modules can
lead to inefficiency and/or problems such as input and output
port scarcity. Other factors to consider is the processing
granularity of data and computation complexity. If a
processing module is designed to take a small granule of data

or have a simple complexity, the acceleration effect would be
trivial or it may even degrade the performance because of the
overhead from the data transfer latency between DDR and
FPGA fabric. In the execution of target applications, the data
size granule is ~MB and the computation complexity is from

 to . According to our evaluation, a complex and
time-consuming task tends to take better advantage of the
hardware acceleration.

VIII. CONCLUSION

This paper presented SafeDB and demonstrated its
security, performance, and practicality. By taking advantage
of ECC, PUF, and PKI system, the AES key for the bitstream
protection is securely shared between client and FPGA. It is
because all the critical operations are performed by the hard-
wired logic in FPGA without human involvement. The
proposed scheme is resistant not only to the man-in-the-
middle attack but to the attacks from malicious insiders. In
SafeDB, the data confidentiality is guaranteed by migrating
application kernel functions with AES crypto engines to the
FPGA fabric. The AES key for data is included in the
hardware bitstream. For the evaluation, we have constructed a
cluster prototype using 8 Zynq UltraScale+ boards. Our
experiments revealed that SafeDB provides the performance
benefit as well, thanks to the hardware acceleration effect. In
the case of the LR system with a 64GB workload, it improved
the performance by up to 1.36x. The FPGA-based clouds are
being emerged in the market and are already in service. We
believe that our approach would expedite a broader adoption
of FPGA-aided cloud systems. The proposed scheme can be
applied to all the big-data platforms with FPGAs and other
security-demanding sectors such as Blockchain.

ACKNOWLEDGMENT
This work was partially supported by Institute of

Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea
government(MSIT) (No.2019-0-00533, Research on CPU
vulnerability detection and validation). *Correspondence to:
Taeweon Suh.

REFERENCES
[1] Apache Spark. “Spark Security” [Online] Available:

https://spark.apache.org/docs/latest/security.html
[2] Gentry, C., “Fully homomorphic encryption using ideal lattices”, Stoc.

Vol. 9. 2009.
[3] Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,

Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y., “Spectre
attacks: Exploiting speculative execution.” arXiv preprint
arXiv:1801.01203, 2018.

[4] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S.,
Kocher, P., Genkin, D., Yarom, Y. and Hamburg, M., “Meltdown.”
arXiv preprint arXiv:1801.01207, 2018.

[5] Trimberger, S.M. and Moore, J.J., “FPGA security: Motivations,
features, and applications.” Proceedings of the IEEE, 102(8), pp.1248-
1265, 2014.

[6] Boppana, V., Ahmad, S., Ganusov, I., Kathail, V., Rajagopalan, V.,
and Wittig, R., “UltraScale+ MPSoC and FPGA families.” 2015 IEEE
Hot Chips 27 Symposium (HCS).

[7] Zerfos, P., Yeo, H., Paulovicks, B.D. and Sheinin, V., “SDFS: Secure
distributed file system for data-at-rest security for Hadoop-as-a-
service.” In 2015 IEEE International Conference on Big Data (Big
Data), pp. 1262-1271.

[8] Schuster, F., Costa, M., Fournet, C., Gkantsidis, C., Peinado, M.,
Mainar-Ruiz, G., and Russinovich, M., “VC3: Trustworthy data
analytics in the cloud using SGX.” In 2015 IEEE Symposium on
Security and Privacy, pp. 38-54.

[9] Chen, G., Chen, S., Xiao, Y., Zhang, Y., Lin, Z., and Lai, T.H.,
“Sgxpectre attacks: Leaking enclave secrets via speculative
execution.” arXiv preprint arXiv:1802.09085, 2018.

[10] Shan, Y., Wang, B., Yan, J., Wang, Y., Xu, N., and Yang, H., “FPMR:
MapReduce framework on FPGA.” In Proceedings of the 18th annual
ACM/SIGDA international symposium on Field programmable gate
arrays, pp. 93-102. 2010.

[11] Chen, Y.T., Cong, J., Fang, Z., Lei, J., and Wei, P., “When Spark Meets
FPGAs: A Case Study for Next-Generation DNA Sequencing
Acceleration.” In 8th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud). 2016.

[12] Morcel, R., Ezzeddine, M., and Akkary, H., “Fpga-based accelerator
for deep convolutional neural networks for the spark environment.” In
2016 IEEE International Conference on Smart Cloud (SmartCloud),
pp. 126-133.

[13] Eguro, K. and Venkatesan, R.,. “FPGAs for trusted cloud computing.”
In 22nd International Conference on Field Programmable Logic and
Applications (FPL), pp. 63-70. IEEE, 2012.

[14] Genssler, P.R., Knodel, O., and Spallek, R.G., “Securing Virtualized
FPGAs for an Untrusted Cloud.” In Proceedings of the International
Conference on Embedded Systems, Cyber-physical Systems, and
Applications (ESCS), pp. 3-9. 2018.

[15] LeBlanc, D. and Viega, J., “24 deadly sins of software security:
programming flaws and how to fix them.”, McGraw-Hill. 2010.

[16] Bernstein, D.J., “Cache-timing attacks on AES.”, 2005.
[17] Kocher, P., Jaffe, J. and Jun, B., “Differential power analysis.”, In

Annual International Cryptology Conference (pp. 388-397). Springer,
Berlin, Heidelberg. 1999.

[18] Kathail, V., Hwang, J., Sun, W., Chobe, Y., Shui, T. and Carrillo, J.,
“SDSoC: A higher-level programming environment for Zynq SoC and
Ultrascale+ MPSoC.”, In Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays (pp. 4-
4).

[19] Xilinx. “PetaLinux Tools” [Online] Available:
https://www.xilinx.com/products/design-tools/embedded-
software/petalinux-sdk.html/

[20] Anderson, J.H., “A PUF design for secure FPGA-based embedded
systems.”, In Proceedings of the 2010 Asia and South Pacific Design
Automation Conference (pp. 1-6). IEEE Press.

	SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data Processing and Bitstream Protection
	Recommended Citation
	Authors

	SafeDB: Spark Acceleration on FPGA Clouds with Enclaved Data Processing and Bitstream Protection

