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Abstract—This paper proposes SafeDB: Spark Acceleration on 
FPGA Clouds with Enclaved Data Processing and Bitstream 
Protection. SafeDB provides a comprehensive and systematic 
hardware-based security framework from the bitstream 
protection to data confidentiality, especially for the cloud 
environment. The AES key shared between FPGA and client for 
the bitstream encryption is generated in hard-wired logic using 
PKI and ECC. The data security is assured by the enclaved 
processing with encrypted data, meaning that the encrypted 
data is processed inside the FPGA fabric. Thus, no one in the 
system is able to look into clients’ data because plaintext data 
are not exposed to memory and/or memory-mapped space. 
SafeDB is resistant not only to the side channel attack but to the 
attacks from malicious insiders.  We have constructed an 8-node 
cluster prototype with Zynq UltraScale+ FPGAs to demonstrate 
the security, performance, and practicability. 

Keywords—FPGA as a service, Bitstream protection, 
Enclaved data processing, Spark big data processing 

I. INTRODUCTION

Clouds are attractive platforms for tasks that require large 
amounts of resources because of its scalability, elasticity, 
flexibility, and cost savings. Compute resources and storage 
can be easily scaled up and down in a pay-as-you-go manner. 
The clouds also provide convenient big data processing 
environment such as MapReduce and Spark for the broad 
adoption from the public. However, customers with private 
and/or sensitive data may be reluctant to use the clouds due to 
the security concern. Most big data processing frameworks 
incorporate some security features, which are typically based 
on cryptography [1]. Nonetheless, the data confidentiality is 
not assured once the key for the crypto operation is leaked. 
One extreme way of protecting data in software-only 
processing is to use fully homomorphic encryption [2]. It 
allows for directly processing cipher-text data without 
decryption, but it is too expensive in terms of the processing 
time. With the growing concerns for security, processor 
vendors such as Intel, AMD, and ARM are shipping their 
products with Trusted Execution Environment (TEE) called 
SGX, SME, and TrustZone. However, as revealed in Spectre 
and Meltdown cases [3, 4], microarchitecture weaknesses are 
exploited to disarm the security and extract data in main 
memory.   

Field-Programmable Gate Arrays (FPGAs) are being 
emerged as one of the major resources in clouds because data 
processing can be accelerated with customized hardware 
engines. These days, renowned cloud providers are already 
offering FPGAs in their premises. For example, Amazon EC2 
F1 and Huawei FACS provide Xilinx’s Virtex UltraScale+ 
FPGAs, whereas Microsoft Azure offers Intel's Arria-10 GX 
FPGAs. FPGAs are configured with the bitstream that is a 
low-level representation of hardware design. The bitstream is 
susceptible to similar security attacks to software, including 
unauthorized copy, IP theft, reverse-engineering, and 
tampering [5]. If the hardware design is reverse-engineered 
and tampered from the bitstream, an attacker could peek the 
data being processed and transfer it through a covert channel. 
To cope with this problem, modern FPGAs provide the 
bitstream protection mechanisms mostly based on the AES 
encryption, and the encryption key is stored in on-board 
storage. In the cloud environment, the bitstream protection is 
susceptible to the man-in-the-middle (MITM) attack. It is 
because the key along with the encrypted bitstream should be 
sent remotely from customers to the clouds for the FPGA 
configuration.   

In this paper, we propose SafeDB, a Spark-based 
comprehensive and systematic framework for security and 
data processing acceleration in FPGA-based clouds. For the 
bitstream protection, SafeDB proposes a hard-wired logic in 
FPGAs for the key exchange and authentication using the 
Public Key Infrastructure (PKI). For the data confidentiality, 
it implements a fully enclaved processing of application 
kernels inside FPGA fabric, taking and emitting only 
encrypted data. Thus, the plaintext data are never exposed to 
memory-mapped space. We estimated the hardware cost of 
implementing the proposed bitstream protection scheme. For 
the performance evaluation, we have constructed a complete 
SafeDB cluster system with eight Zynq UltraScale+ devices 
[6]. The experiments show that SafeDB achieves the 
performance improvement of real applications by up to 1.36x. 

The remainder of this paper is organized as follows: 
Section II introduces background information. Section III 
summarizes the related works. Section IV details the proposed 
architecture with its security analysis. In Section V, we 
elaborate on the detailed implementation. Section VI shows 
the experimental results and their analysis. We discuss the 
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practicability and usability of the SafeDB in Section VII. We 
finally conclude our paper in Section VIII. 

II. BACKGROUND

A. Spark Overview
Spark is one of the most prevalent frameworks for big data

processing with fault tolerance support and in-memory cluster 
computing. It provides high-level APIs in Java, Scala, Python 
and R. With the APIs, it is convenient to develop applications 
without requiring much of customization. Spark aims at 
improving the MapReduce framework in terms of the 
flexibility via high-level APIs and the performance by 
minimizing accesses to the secondary storage. Spark supports 
batch processing and provides a micro-batch based streaming 
model. Its framework also offers diverse tools including Spark 
SQL for the structured data processing, MLlib for the machine 
learning, GraphX for the graph processing, and Spark 
streaming for real-time processing. For performance, it 
especially introduces a new abstract data structure called 
resilient distributed dataset (RDD). The RDD is a read-only 
multiset of data items normally residing in memory. RDD can 
be created from data in secondary storage or other RDDs. It 
can act as a working set of data processing. Various 
transformations such as data-accumulation-by-key can be 
applied to RDDs. The sequence of RDD operations is tracked 
in Spark for fault tolerance.  

B. Bitstream Protection in Modern FPGAs
Modern FPGAs are equipped with hard-wired bitstream

protection modules where the AES, a symmetric 
cryptography, is typically used for the bitstream encryption. 
The symmetric key itself is also encrypted and stored in on-
board storage. Table I summarizes the encryption methods 
and key storages in modern FPGAs from major vendors. 

TABLE I. SECURITY FEATURES OF MODERN FPGAS 

Security 
Features 

Xilinx Intel Microsemi 

Virtex / 
Kintex 

UltraScale+ 

Zynq 
UltraScale+ 

Arria-10 
GX / SX 

Stratix-10 
GX / SX SmartFusion2

Bitstream 
encryption 

AES-GCM 
256 

AES-GCM 
256 

AES-GCM 
256 

AES-GCM 
256 

AES-GCM 
128/256 with 

ECDH 

Key 
Storage 

BBRAM 
eFUSE 

BBRAM 
eFUSE 

PUF 

BBRAM 
eFUSE 

BBRAM 
eFUSE 

PUF 

FLASH 
PUF 

Since the bitstream itself is shielded by the AES 
encryption, the remaining issue is the AES key protection. As 
shown in Table I, Physically Unclonable Function (PUF) is 
especially incorporated in the major devices and used for the 
key protection. The PUF takes advantage of semiconductor 
process variations such as oxide thickness and channel length. 
It is used as a digital fingerprint of each device. The PUF 
generates a unique response (output) for each challenge 
(input). There are two PUF-based key protection schemes in 
FPGAs; The first one directly generates the encrypted key 
with the PUF output and stores the result (encrypted key) in 
on-board non-volatile memory. At the time of the FPGA 

configuration with the encrypted bitstream, the encrypted key 
in the non-volatile memory is decrypted by the PUF’s output 
and used for the bitstream decryption. This scheme is applied 
to Zynq UltraScale+. The second scheme is based on the key 
exchange protocol with Diffie-Hellman algorithms where the 
‘shared secret’ between user and FPGA is generated. With its 
own private key and the counterpart’s public key, both the 
user and FPGA can generate the same AES key. On the FPGA 
side, the private key of each FPGA is the PUF output and its 
corresponding public key is released to the user. At the time 
of the FPGA configuration with the encrypted bitstream, the 
shared AES key is generated inside the FPGA and used for the 
bitstream decryption. This scheme is used in the Microsemi 
SmartFusion2.  

III. RELATED WORKS

There are several studies on securing big data workload. 
Zerfos [7] proposed a secure distributed file system (SDFS) 
for Hadoop to provide data-at-rest protection. SDFS can read 
and write encrypted data on behalf of MapReduce 
applications using keys that are distributed and controlled by 
customers. Nevertheless, software-based data-at-rest security 
has drawbacks in that the plaintext is inevitably exposed in 
memory space and the performance can negatively be affected 
by the cryptographic operation. Schuster [8] proposed 
Verifiable Confidential Cloud Computing (VC3) system 
using Intel SGX. The VC3 ensures that the MapReduce 
applications are confidentially and verifiably executed under 
untrusted cloud environments. However, as demonstrated in 
SgxPectre [9], the SGX can be compromised by exploiting the 
architectural vulnerability. 

There are case studies for big data processing acceleration 
using reconfigurable hardware. Shan et al [10] implemented a 
MapReduce framework on FPGA, referred to as FPMR, 
where the whole process of the mapper and reducer including 
scheduler is executed inside the FPGA. Chen et.al. presented 
the design of FPGA-based Spark acceleration for DNA 
sequencing [11]. Morcel et.al [12] implemented an FPGA-
based accelerator for the distributed training of deep 
convolutional neural network with Spark. These prior works 
have focused only on acceleration without considering the 
data confidentiality. 

There are prior works regarding the bitstream protection 
for the remote FPGAs in clouds. Eguro et al [13] proposed a 
trusted third party based bitstream protection scheme. The 
proposal relies on the Trusted Authority (TA) for key 
management. More specifically, TA undertakes to register 
AES keys for all FPGA boards before shipping to the clouds, 
encrypting all the bitstreams requested from users, and 
sending them to the clouds. This method is susceptible to 
MITM attack when sending bitstreams to the TA. Genssler et 
al [14] proposed a secure bitstream protection scheme and its 
end-to-end connection protocol between virtualized FPGA 
and client. On the FPGA fabric, client’s encrypted bitstream 
is decrypted and configured to a certain area of FPGA fabric 
via partial reconfiguration technology. To the best of our 
knowledge, SafeDB is the first comprehensive and systematic 
framework for security and acceleration for FPGA-as-a-
Service (FaaS). It covers from the bitstream protection to the 



data confidentiality with the real implementation and 
evaluation on an off-the-shelf FPGA based cluster. 

IV. SAFEDB ARCHITECTURE AND ITS SECURITY 
ANALYSIS 

Fig 1.  SafeDB overview 

A. Threat Model
The Cloud Service Provider (CSP) offers FPGAs and we

assume that the FPGAs are trusted and their vendors have a 
complete monitoring mechanism to prevent adversaries from 
influencing the device manufacturing process. On the CSP 
side, there may be malicious insiders or outsiders who want to 
learn about the data being processed. They may sneak into the 
cloud system and try to steal the clients’ private and/or 
sensitive information via illegal access. They may even try to 
tamper hardware bitstream to figure out sensitive data. The 

clients have large amounts of personal and/or sensitive data to 
manipulate and thus need a big data processing platform that 
guarantees no information leakage both in the perspective of 
data and its functional behavior. Simply speaking, no one on 
the CSP side should be able to learn about customers' data and 
its hardware design. 

B. SafeDB System Architecture
SafeDB provides a systematic hardware-based mechanism 

from the bitstream protection to data security. Fig. 1 shows the 
operational overview of SafeDB where the data and bitstream 
flow from a client to CSP is depicted. The client has data to 
process and application to run, which are sent to CSP for 
execution. For security, data is encrypted with the client’s 
AES key and sent to CSP. The application is divided into two 
parts: house-keeping and kernel codes. The kernel code, 
which actually processes the client’s data, is automatically 
translated to the hardware by CAD tools and will later be 
executed inside FPGA on CSP. The house-keeping code is 
executed in software on CSP. For security, FPGA takes 
encrypted data, decrypts it, executes the kernel and finally 
encrypts the output for passing it externally. Thus, the 
bitstream is prepended with the AES decryption module and 
appended with the AES encryption module, which is 
performed in the SafeDB framework. To call the hardware-
translated kernel in runtime, the client should prepare 
firmware with the house-keeping code. The CAD tool helps 
generate the firmware. On the CSP side, there is a 
management tool called FPGA-as-a-Service (FaaS) software 
that mediates an end-to-end connection between FPGA and 
the client for the initial configuration. It performs simple 

Fig 2.  Basic components and operational procedure of bitstream protection in SafeDB 



communication operations such as passing metadata, for 
bitstream protection. 

C. Bitstream Protection in SafeDB
As in modern FPGAs, the bitstream itself is encrypted by

AES on the client side. Then, the AES key should be safely 
shared with FPGAs on the clouds. For the AES key sharing, 
the SafeDB utilizes the PKI and ECC algorithms. The PKI is 
an asymmetric key based security system. In the PKI system, 
a trusted party called Certificate Authority (CA) guarantees 
that a public key is genuine by issuing a certificate, which is 
signed by the CA’s private key. Then, each party is able to 
authenticate the public key of its counterpart. 

The hardware components and operation flow required for 
the key sharing are depicted in Fig. 2. The PRNG is used to 
generate diverse inputs (challenges) to PUF. The PUF’s 
output (response) is used as a private key (  Then, its 
corresponding public key ( ) is generated with . Note 
that only public key is released to the outside world. Initially, 
both client and FPGA generate their own private keys ( , 

), and their corresponding public keys ( ,  are 
computed from the ECDH public key generator. Then, the 
FPGA identification and its public key are transferred to CA 
( ), and the client also sends its public key to CA ( ). The 
FPGA chip ID from the manufacturer can be used as the 
FPGA identification. Then, CA issues and sends an ECDSA 
certificate to each party ( ). The CA-signed certificate 
contains the ID, public key, and timestamp for validity. When 
a client wants to use FPGAs, he/she sends a request to the CSP 
with the CA-signed certificate ( ). Then, the FaaS software 
assigns several boards and sends the corresponding CA-
signed certificates to the requestor ( ). On each party, the 
counterpart’s certificate is verified in the ECDSA verification 
module  With its own private key and its 
counterpart's public key, each party generates the same shared 
secret. Finally, the AES key used for the bitstream encryption 
is generated from the KDF with the shared secret. With the 
derived AES key, the client generates the encrypted bitstream 
( ) and sends it to CSP.  FPGA on the CSP then decrypts 
the received bitstream with the same derived AES key ( ). 
Because all critical information is hidden in hard macro blocks 
inside FPGA, the proposed scheme has no surface for rogues 
to steal and/or eavesdrop AES key and/or private key on the 
CSP side. 

D. Data Confidentiality in SafeDB
For the data confidentiality, SafeDB proposes a fully

enclaved processing by migrating Spark application kernel 
functions to the FPGA fabric in an isolated manner. All the 
data-at-rest are stored in memory or secondary storage in 
encrypted form even it is intermediate data. To take the 
encrypted data for processing and emit the encrypted output 
after processing, one AES crypto engine is prepended on the 
front side of the application kernels, and another is appended 
on the rear side. Note that the AES key for the data protection 
is different from the AES key for the bitstream protection; The 
latter is distinct according to the FPGAs because the PUF 

inside each FPGA generates a unique private key. The client 
would want to use the same AES key for data regardless of the 
FPGAs. The AES key for data is included in the bitstream. 

The detailed operational procedure and hardware/software 
co-operation for data confidentiality is depicted in Fig. 3. First, 
a Spark application partitions the encrypted data and calls the 
firmware to execute the application kernels ported into the 
FPGA fabric. The firmware contains the device drivers for the 
application kernel function. The firmware takes an argument, 
which is either a path to the input file or input data itself. Then, 
the partitioned encrypted data in memory is supplied to the 
AES decryption module in the FPGA fabric via DMA. After 
the decryption, the application kernel performs the data 
processing. Then, its output is passed to the AES encryption 
module. Finally, the DMA carries out the encrypted data 
transfer from the FPGA fabric to memory. 

Fig 3.  Basic components and operational procedure for data 
confidentiality in SafeDB 

E. Security Analysis
In SafeDB, it is not feasible to look into the plaintext data.

It is because the data is stored in an encrypted form all the time 
in memory, and the data processing occurs inside the FPGA 
fabric. Furthermore, the bitstream is also protected by the 
hard-wired IPs described in Section IV-C. It means that 
known software attacks [15] are essentially blocked and 
prevented. Side channel attack (SCA) may be attempted to 
extract key information from AES modules inside FPGA. 
There are two kinds of attack scenarios in SCA: Timing 
analysis and Power analysis. In the timing-based attack [16], 
attackers measure the time to perform a certain operation. By 
measuring the execution times according to parameters, the 
attackers can speculate the stored key. However, the AES 
algorithm in SafeDB is implemented as hardware and there is 
no memory-mapped register for storing the intermediate 
outcome of crypto operations. In addition, the implemented 
AES engine consumes a constant amount of time regardless 
of inputs. Therefore, the timing attack is not feasible. The 
power analysis based SCA may be carried out if attackers 
know the information gathered from the power trace with 
knowledge about the implementation. The power trace is 
collected by physically connecting a power meter to the 
system. There is a published power analysis attack against a 
Virtex 800 FPGA [17]. However, the power-based SCA 
requires prior knowledge about the hardware implementation 
and its location. It is not virtually possible to perform this kind 



of attacks in SafeDB because the bitstream is created and 
encrypted from the client.  

V. SAFEDB CLUSTER SYSTEM IMPLEMENTATION

A. Experiment Environment
We used eight ZCU102 boards for cluster setup. Each

board has Zynq UltraScale+ where Cortex-A53 quad-core 
processor with 1.5 GHz, 4GB DDR4 RAM, and a number of 
programmable logic cells are contained. Fig. 4 shows a picture 
of a constructed 8-node cluster. The eight nodes are connected 
through Ethernet via a switch. SDSoC 2016.4v [18], a CAD 
tool from Xilinx, is used for hardware and software 
implementation. The SDSoC provides a capability of the 
automated system-level integration for C/C++/OpenCL code, 
targeting Zynq programmable SoCs. The system-level 
integration includes software-to-hardware translation, device 
driver generation, and kernel creation. The SDSoC allows 
users to specify software functions to be translated to 
hardware. For the maximal performance and throughput that 
FPGA allows, it provides directives that can be annotated in 
C/C++ source code. 

Fig 4.  Cluster prototype with eight Zynq UltraScale+ boards 

B. Cluster Setup with Linux Kernel, File System, and Boot
Image Creation

Fig 5.  Hardware bitstream and firmware generation flow in SafeDB 
prototype with Zynq Ultrascale+ 

Fig. 5 shows the bitstream and software generation flow 
for the experiments with a prototyped SafeDB system. We 
implemented AES software for data protection, which will be 
provided to clients. For the hardware implementation with 
SDSoC, application kernel functions and AES are marked for 
the hardware translation. Then, SDSoC generates a hardware 
description file (hdf) including bitstream. With the hdf file, 
PetaLinux tool [19] can build a customized linux kernel image. 
The SDSoC also build an elf file, which is firmware. The elf 
is included in each target application program. We used the 
Ubuntu 16.04 ARMv8 file system from Ubuntu official 
repository and installed Spark 2.2.  

C. Target Applications
We used three benchmark programs to evaluate the

SafeDB in terms of performance and hardware utilization: 
Word Count, Sobel Filter, and Logistic Regression. The 
benchmark details are elaborated as follows: 
• Word Count (WC): WC is one of the most commonly used

benchmarks for big data processing. It reads input data,
splits each word, and creates a key-value pair. Then, all the 
intermediate values are accumulated if the key (word) is
the same. The complexity of WC is . The WC
hardware module processes a 2MB data per execution.

• Sobel filter (SF): The Sobel operator is used in image
processing and computer vision, particularly for detecting
edges. First, each image is split into window-sized
partitions. In our implementation, each original image was
split into 1024x512 partitions. Then, the edge detection is
performed with the 3x3 kernel, to compute the derivative
approximations of image convolution. The complexity of
SF is .

• Logistic regression (LR): LR is widely used to predict a
binary response. The binary logistic model is used to
estimate the probability of a binary response based on one
or more predictor variables. LR is used in various fields,
especially machine learning. In this application, the Spark
splits encrypted input data by 2MB, which has 1024 data
sets. Each set has 512 floating-point data representing 512
kinds of features. In the hardware module, the weight
update and regularization occur continuously. The
complexity of implemented LR is .

D. Bitstream Protection Hardware with PUF
We have implemented hardware modules for bitstream

protection described in Section IV-C with Vivado. Based on 
the open-source software, we have made modifications for 
high-level synthesis and generated a PRNG, ECDH public key 
& shared secret generator, and ECDSA verification module. 
The PRNG is based on a linear feedback shift register (LFSR). 
B-571(sect571r1) parameters are selected for the ECDH and
ECDSA implementation. The B-571 has 571-bit private key
and 1142-bit public key for the ECDH handshaking. We set
the same 571-bit output length for both PUF and ECDH
shared secret. The ECDSA module is also fitted to take the
1142-bit public key. The KDF module takes the 571-bit
shared secret and uses SHA256 to generate the 256-bit AES
key. It is called the HMAC-based extract-and-expand key
derivation function (HKDF). For the PUF, we used



Anderson’s soft PUF [20]. It takes advantage of the timing 
delay variation between two carry-chained lookup tables 
when used as the shift register. In the implementation, the 
XOR-based challenge and response framework is applied to 
get the diverse outputs from the PUF. The PUF is designed via 
HDL. The hardware cost for each module is estimated in 
Section VI. 

VI. SAFEDB EVALUATIONS

A. Resource Utilization and Performance of Hardware
Components
Table II summarizes the resource utilization and

performance of each hardware module for bitstream 
protection. Block RAMs (BRAMs) are used as internal 
memory in Xilinx FPGA. Digital Signal Processing units 
(DSPs) are typically used when translating signal processing 
algorithms with multiply-accumulation (MAC) operations. 
Flip-flops (FFs) and Lookup Tables (LUTs) are used for 
general logic designs. Overall, the bitstream protection 
hardware occupies 4.61% of BRAMs, 4.69% of FFs, and 
17.72% of LUTs of the programmable logic. When it comes 
to the performance, all modules are operating at 100MHz. The 
PRNG and the PUF take 1 cycle and AES256 take 520 cycles 
for execution, whereas the execution times of ECDH, 
ECDSA, and KDF modules are dynamically determined 
according to inputs.  

TABLE II. RESOURCE UTILIZATION AND EXECUTION TIME OF 
HARDWARE COMPONENTS FOR BITSTREAM PROTECTION 

Hardware 
Components  

#BRAMs 
(18Kbit) 

#DSPs 
(48E) #FFs #LUTs Execution 

Time 

PRNG 
100MHz 

0 
(0%) 

0 
(0%) 

0 
(0%) 

522 
(0.19%) 

1 Cycle 
(10ns) 

PUF 
100MHz 

0 
(0%) 

0 
(0%) 

1,168 
(0.21%) 

2,170 
(0.79%) 

1 Cycle 
(10ns) 

ECDH 
Public key 
generator 
100MHz 

20 
(1.10%) 

0 
(0%) 

4,476 
(0.82%) 

12,926 
(4.72%) N/A 

ECDH 
Shared secret 

generator 
100MHz 

26 
(1.43%) 

0 
(0%) 

4,200 
(0.77%) 

13,187 
(4.81%) N/A 

ECDSA 
Verification 

module 
100MHz 

22 
(1.21%) 

0 
(0%) 

3,362 
(0.61%) 

10,790 
(3.94%) N/A 

KDF 
100MHz 

8 
(0.44%) 

0 
(0%) 

1,056 
(0.19%) 

3,987 
(1.45%) N/A 

AES256 
decryption 
100Mhz 

8 
(0.44%) 

0 
(0%) 

11,457 
(2.09%) 

4,990 
(1.82%) 

520 cycles 
(5,200ns) 

Table III summarizes the resource utilization and 
performance of each hardware component for data processing. 
The WC application kernel consumes relatively low hardware 
resources due to the simplicity of the application. In SF and 
LR, BRAMs are mainly used in the hardware translation 
whereas DSPs, FFs, and LUTs are not much utilized in the 
three application kernels. After the hardware translation, we 
have measured the maximum operating frequency of the 

hardware system, which turned out to be 200MHz due to the 
timing constraints. The execution times of WC and SF 
hardware kernels are roughly 10.49ms and 80.86ms, 
respectively. The execution time of LR varies around 
10.81sec because a certain internal loop can finish when the 
break condition is met. The AES128 encryption and 
decryption take about 0.2 s for a single execution separately. 

TABLE III.  RESOURCE UTILIZATION AND EXECUTION TIME OF 
HARDWARE COMPONENTS FOR DATA PROCESSING 

Hardware 
Components 

#BRAMs 
(18Kbit) 

#DSPs 
(48E) #FFs #LUTs Execution Time 

WC kernel 
200MHz 

2 
(0.11%) 

0 
(0%) 

714 
(0.13%) 

520 
(0.19%) 

2,097,154 cycles 
(10,485,770ns) 

SF kernel 
200MHz 

1,698 
(93.09%) 

16 
(0.63%) 

13,367 
(4.88%) 

16,446 
(3.00%) 

16,172,253 cycles 
(80,861,265ns) 

LR kernel 
200MHz 

933 
(51.15%) 

22 
(0.87%) 

3,877 
(0.71%) 

8,104 
(2.96%) 

2,162,181,647 
cycles 

( 10,810,908,235ns)

AES128 
encryption 
200Mhz  

0 
(0%) 

0 
(0%) 

6,865 
(1.25%) 

3,300 
(1.20%) 

426 cycles 
(2,130ns) 

AES128 
decryption 
200Mhz 

8 
(0.44%) 

0 
(0%) 

11,455 
(2.09%) 

4,982 
(1.82%) 

384 cycles 
(1,920ns) 

B. Resource Utilization, Power Consumption, and
Performance of a Single Node
Table IV shows the overall resource utilization and power

consumption of final hardware systems on a single node 
according to the target applications. They are different from 
the ones in Table III. It is because the system interconnection 
such as AXI is always required and DMA engines are 
integrated for speeding up the data transfer. The FFs and 
LUTs are utilized by up to 8.16 %, and 12.21%, respectively. 

TABLE IV. OVERALL RESOURCE UTILIZATION AND POWER 
CONSUMPTION OF TARGET APPLICATIONS ON ULTRASCALE+ 

Hardware 
Systems  

#BRAMs 
(18Kbit) 

#DSPs 
(48E) #FFs #LUTs Power 

Consumption

WC System 
200MHz 

143 
(7.84%) 

3 
(0.12%) 

38,543 
(7.03%) 

27,925 
(10.19%) 4.023W 

SF kernel 
200MHz 

1,771 
(97.09%) 

22 
(0.87%) 

42,171 
(7.69%) 

32,057 
(11.70%) 4.772W 

LR kernel 
200MHz 

1,055 
(57.84%) 

28 
(1.11%) 

44,703 
(8.16%) 

33,465 
(12.21%) 4.463W 

Fig. 6 shows the resource utilization breakdown of 
hardware systems in the FPGA fabric except for DSP. In the 
WC, the application kernel module is relatively tiny so that 
AXI interface modules occupy a considerable portion of 
hardware resources. Except for the WC system, the BRAMs 
were mainly utilized for application kernel functions. In the 
SF system, FFs and LUTs are also mainly consumed by the 
application kernel function. The power consumptions for each 
benchmark follow the allocated BRAM resources because the 
utilization variation of the other resources is marginal. 

Fig. 7 shows normalized execution times of target 
applications over software-only approach, which is used as a 
baseline in the experiment. The experiments were performed 
by running each elf file once. We observed that, as the 



algorithm complexity increases, the acceleration effect is 
relatively moderate. The WC system took the benefit of 
SafeDB the most by boosting performance by 25.6x over the 
baseline. The SF system provides roughly an 18x performance 
improvement, whereas the LR achieves a 2x performance over 
the baseline. We strongly believe that it is because LR exhibits 
the data locality characteristic, which takes advantage of the 
caches of Cortex-A53 in the baseline. 

Fig 6.  Resource utilization breakdown of hardware systems according 
to resource types in the FPGA fabric of Zynq UltraScale+ 

Fig 7.  Normalized execution times of each applicaion over baseline 
without Spark environment. 

To measure the performance of the organized cluster, the 
target applications were executed with three workload sizes: 
64GB, 128GB, and 192GB. To maximize the hard-wired 
processing system performance, each node executes four 
threads. Note that the hard-wired processing system has four 
Cortex-A53 cores. Fig. 8 shows the normalized execution 
times over the baseline. The SafeDB improves performance 
throughout the benchmark programs. Especially, the LR 
shows the largest improvement of 1.36x with 64GB data. 
However, compared with the single execution in Fig. 7, the 
performance difference from the baseline is not considerable. 
There are two reasons: the difference in the number of threads 
and the task management scheme in Spark. First, by assigning 
the tasks to four cores, the performance of the baseline was 
improved dramatically by ideally up to 4x. The second reason 

is the overhead in Spark task management. Spark uses a 
method called the lazy evaluation, with which the execution 
is not started immediately. Thus, the elf execution may be 
delayed, and the impact of the overhead will be noticeable as 
the execution time of the translated application kernel in 
hardware becomes shorter. The pure execution times of WC 
and SF are around 0.3 seconds, whereas LR takes around 11 
seconds per single execution. Thus, as shown in Fig. 8, the LR 
exhibits a better improvement in performance, relatively well 
absorbing its overhead. 

Fig 8.  Normalized execution times on the organized cluster  
(that is , 8 UltraScale+ boards) over baseline 

VII. DISCUSSION

For security, modern FPGAs are equipped with hard-
macro IPs; Xilinx integrates Chip Security Unit (CSU) and 
Intel has Secure Device Manager (SDM). SafeDB proposes 
such hard-wired bitstream protection for the cloud 
environment, taking advantage of ECC and PUF with the PKI 
system. As reported in Section VI, the overall hardware cost 
for bitstream protection is reasonably low. Therefore, we 
strongly believe that the proposed solution can be easily 
implemented in the FPGAs targeting for the cloud 
environment.  

The proposed solution can be used not only for the big data 
processing purposes but for other application areas such as 
Blockchain where the security demand is high. For example, 
for the blockchain system with FPGAs, ECDH or ECDSA can 
be implemented in the FPGA fabric, and soft PUFs can be 
used to generate a random number for a private key. Even 
blockchain virtual machines can be implemented in FPGA 
fabric to increase security for smart contracts. It would make 
the transactions on Blockchain much more secure, compared 
to the software approach. 

There were some design considerations when 
implementing a SafeDB hardware system with automated 
CAD tools such as SDSoC. While FPGAs can be used for 
acceleration by parallelism, too many hardware modules can 
lead to inefficiency and/or problems such as input and output 
port scarcity. Other factors to consider is the processing 
granularity of data and computation complexity. If a 
processing module is designed to take a small granule of data 



or have a simple complexity, the acceleration effect would be 
trivial or it may even degrade the performance because of the 
overhead from the data transfer latency between DDR and 
FPGA fabric. In the execution of target applications, the data 
size granule is  ~MB and the computation complexity is from 

 to . According to our evaluation, a complex and 
time-consuming task tends to take better advantage of the 
hardware acceleration.  

VIII. CONCLUSION

This paper presented SafeDB and demonstrated its 
security, performance, and practicality. By taking advantage 
of ECC, PUF, and PKI system, the AES key for the bitstream 
protection is securely shared between client and FPGA. It is 
because all the critical operations are performed by the hard-
wired logic in FPGA without human involvement. The 
proposed scheme is resistant not only to the man-in-the-
middle attack but to the attacks from malicious insiders. In 
SafeDB, the data confidentiality is guaranteed by migrating 
application kernel functions with AES crypto engines to the 
FPGA fabric. The AES key for data is included in the 
hardware bitstream. For the evaluation, we have constructed a 
cluster prototype using 8 Zynq UltraScale+ boards. Our 
experiments revealed that SafeDB provides the performance 
benefit as well, thanks to the hardware acceleration effect. In 
the case of the LR system with a 64GB workload, it improved 
the performance by up to 1.36x. The FPGA-based clouds are 
being emerged in the market and are already in service. We 
believe that our approach would expedite a broader adoption 
of FPGA-aided cloud systems. The proposed scheme can be 
applied to all the big-data platforms with FPGAs and other 
security-demanding sectors such as Blockchain.  
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