1,977 research outputs found

    Lack of Association between Polymorphisms of the Dopamine Receptor D4 and Dopamine Transporter Genes and Personality Traits in a Korean Population

    Get PDF
    Human personality traits have a considerable genetic component. Cloninger et al. were the first to postulate that certain personality traits, such as novelty seeking, are related to the dopamine neurotransmitter system. In this study, we investigated the associations between dopamine receptor D4 (DRD4) exon III and dopamine transporter (DAT1) polymorphisms and personality traits. The DRD4 and DAT1 gene polymorphisms were genotyped in 214 healthy Korean subjects, whose personality traits were assessed with the Temperament and Character Inventory (TCI). There were no significant differences between scores of TCI temperament dimensions (novelty seeking, harm avoidance, reward dependence, and persistence) and DRD4 gene polymorphism. The DAT1 gene polymorphisms also showed no significant association with any of the temperament subscales of the TCI. These data suggest that DRD4 and DAT1 gene polymorphism may not associated with personality traits in a Korean population

    Thiol-linked peroxidase activity of human ceruloplasmin

    Get PDF
    AbstractHuman ceruloplasmin exhibited different antioxidant effects according to the electron donors in a metal-catalyzed oxidation system. Purified ceruloplasmin did not play a significant role in the protection of DNA strand breaks in the ascorbate/Fe3+/O2 system. However, when ascorbates were replaced with a thiol-reducing equivalent such as dithiothreitol, DNA strand breaks were significantly prevented by the same amount of ceruloplasmin. Ceruloplasmin did not catalyze the decomposition of H2O2 in the absence of reduced glutathione. On the contrary, ceruloplasmin showed a potent peroxidase ability to destroy H2O2 in the presence of reduced glutathione. In conclusion, the removal of H2O2 by human ceruloplasmin is not simply stoichiometric but thiol-dependent

    Prolonged Activation of ERK Contributes to the Photorejuvenation Effect in Photodynamic Therapy in Human Dermal Fibroblasts

    Get PDF
    Photodynamic therapy (PDT) is known to be effective in the photorejuvenation of photoaged skin. However, the molecular mechanisms of rejuvenation by PDT remain elusive. In this study, we aimed to understand the molecular events occurring during the photorejuvenation after PDT in dermal fibroblasts in vitro. First, we found that PDT conditions resulted in an increased fibroblast proliferation and motility in vitro. Under this condition, cells had increased intracellular reactive oxygen species (ROS) production. Importantly, PDT induced a prolonged activation of extracellular signal–regulated kinase (ERK) with a corresponding increase in matrix metalloproteinase (MMP)-3 and collagen type Iα messenger RNA and protein. Moreover, inhibition of PDT-induced ERK activation significantly suppressed fibroblast proliferation and expression of MMP-3 and collagen type Iα following PDT. In addition, NAC (an antioxidant) inhibited PDT-induced fibroblast proliferation and ERK activation indicating that prolonged ERK activation and intracellular ROS contribute to the proliferation of fibroblasts and the dermal remodeling process for skin rejuvenation. We also identified increased collagen volume and decreased elastotic materials that are used as markers of photoaging in human skin samples using histochemical studies. Results from this study suggest that intracellular ROS stimulated by PDT in dermal fibroblasts lead to prolonged activation of ERK and, eventually, fibroblast proliferation and activation. Our data thus reveal a molecular mechanism underlying the skin rejuvenation effect of PDT

    AoA-based Position and Orientation Estimation Using Lens MIMO in Cooperative Vehicle-to-Vehicle Systems

    Full text link
    Positioning accuracy is a critical requirement for vehicle-to-everything (V2X) use cases. Therefore, this paper derives the theoretical limits of estimation for the position and orientation of vehicles in a cooperative vehicle-to-vehicle (V2V) scenario, using a lens-based multiple-input multiple-output (lens-MIMO) system. Following this, we analyze the Crameˊ\acute{\text{e}}r-Rao lower bounds (CRLBs) of the position and orientation estimation and explore a received signal model of a lens-MIMO for the particular angle of arrival (AoA) estimation with a V2V geometric model. Further, we propose a lower complexity AoA estimation technique exploiting the unique characteristics of the lens-MIMO for a single target vehicle; as a result, its estimation scheme is effectively extended by the successive interference cancellation (SIC) method for multiple target vehicles. Given these AoAs, we investigate the lens-MIMO estimation capability for the positions and orientations of vehicles. Subsequently, we prove that the lens-MIMO outperforms a conventional uniform linear array (ULA) in a certain configuration of a lens's structure. Finally, we confirm that the proposed localization algorithm is superior to ULA's CRLB as the resolution of the lens increases in spite of the lower complexity.Comment: 16 pages, 11 figure

    Shear-solvo defect annihilation of diblock copolymer thin films over a large area

    Get PDF
    Achieving defect-free block copolymer (BCP) nanopatterns with a long-ranged orientation over a large area remains a persistent challenge, impeding the successful and widespread application of BCP self-assembly. Here, we demonstrate a new experimental strategy for defect annihilation while conserving structural order and enhancing uniformity of nanopatterns. Sequential shear alignment and solvent vapor annealing generate perfectly aligned nanopatterns with a low defect density over centimeter-scale areas, outperforming previous single or sequential combinations of annealing. The enhanced order quality and pattern uniformity were characterized in unprecedented detail via scattering analysis and incorporating new mathematical indices using elaborate image processing algorithms. In addition, using an advanced sampling method combined with a coarse-grained molecular simulation, we found that domain swelling is the driving force for enhanced defect annihilation. The superior quality of large-scale nanopatterns was further confirmed with diffraction and optical properties after metallized patterns, suggesting strong potential for application in optoelectrical devices

    Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incidentally found thyroid lesions are frequently detected in patients undergoing FDG-PET/CT. The aim of this study was to investigate the prevalence of incidentally found thyroid lesions in patients undergoing FDG-PET/CT and determine the risk for thyroid cancer.</p> <p>Methods</p> <p>FDG-PET/CT was performed on 3,379 patients for evaluation of suspected or known cancer or cancer screening without any history of thyroid cancer between November 2003 and December 2005. Medical records related to the FDG-PET/CT findings including maximum SUV(SUV<sub>max</sub>) and pattern of FDG uptake, US findings, FNA, histopathology received by operation were reviewed retrospectively.</p> <p>Results</p> <p>Two hundred eighty five patients (8.4%) were identified to have FDG uptake on FDG-PET/CT. 99 patients with focal or diffuse FDG uptake underwent further evaluation. The cancer risk of incidentally found thyroid lesions on FDG-PET/CT was 23.2% (22/99) and the cancer risks associated with focal and diffuse FDG uptake were 30.9% and 6.4%. There was a significant difference in the SUV<sub>max </sub>between the benign and malignant nodules (3.35 ± 1.69 vs. 6.64 ± 4.12; P < 0.001). There was a significant correlation between the SUV<sub>max </sub>and the size of the cancer.</p> <p>Conclusion</p> <p>The results of this study suggest that incidentally found thyroid lesions by FDG-PET/CT, especially a focal FDG uptake and a high SUV, have a high risk of thyroid malignancy. Further diagnostic work-up is needed in these cases.</p

    Antinociceptive and Anti-Inflammatory Effects of Ethanolic Extracts of Glycine max (L.) Merr and Rhynchosia nulubilis Seeds

    Get PDF
    The aim of this study was to assess the in vivo potential of ethanolic extracts of Glycine max (L.) Merr. (SoRiTae) and Rhynchosia nulubilis (Yak-Kong) seeds as natural anti-nociceptive and anti-inflammatory agents. To assess the anti-nociceptive and anti-inflammatory potential, the ethanolic extracts of SoRiTae and Yak-Kong seeds were tested in arachidonic acid-induced ear edema, carrageenan induced paw edema, formalin-induced licking time, acetic acid induced writhing and hot plate-induced thermal stimulation in mice. The administration of ethanolic extracts of SoRiTae and Yak-Kong seeds evoked a significant effect of anti-nociceptive and anti-inflammatory activities as compared to standards aminopyrine and indomethacin. The ear edema, paw edema, paw licking time, pain and writhes in mice were significantly reduced (p < 0.05) as compared to the control. The results obtained in this study indicate that both SoRiTae and Yak-Kong soybeans possesses potential anti-nociceptive and anti-inflammatory activities

    Mechanical Properties and Durability of Latex-Modified Fiber-Reinforced Concrete: A Tunnel Liner Application

    Get PDF
    This study assessed the mechanical properties and durability of latex-modified fiber-reinforced segment concrete (polyolefin-based macrosynthetic fibers and hybrid fiber-macrosynthetic fiber and polypropylene fiber) for a tunnel liner application. The tested macrosynthetic fiber-reinforced concrete has a better strength than steel fiber-reinforced concrete. The tested concrete with blast furnace slag has a higher chloride ion penetration resistance (less permeable), but its compressive and flexural strengths can be reduced with blast furnace slag content increase. Also, the hybrid fiber-reinforced concrete has higher compressive strength, flexural strength, chloride ion water permeability resistance, impact resistance, and abrasion resistance than the macrosynthetic fiber-reinforced concrete. The modified fiber improved the performance of concrete, and the hybrid fiber was found to control the formation of micro- and macrocracks more effectively. Therefore, overall performance of the hybrid fiber-reinforced concrete was found superior to the other fiber-reinforced concrete mixes tested for this study. The test results also indicated that macrosynthetic fiber could replace the steel fiber as a concrete reinforcement
    corecore