494 research outputs found

    The Mt John University Observatory Search For Earth-mass Planets In The Habitable Zone Of Alpha Centauri

    Full text link
    The "holy grail" in planet hunting is the detection of an Earth-analog: a planet with similar mass as the Earth and an orbit inside the habitable zone. If we can find such an Earth-analog around one of the stars in the immediate solar neighborhood, we could potentially even study it in such great detail to address the question of its potential habitability. Several groups have focused their planet detection efforts on the nearest stars. Our team is currently performing an intensive observing campaign on the alpha Centauri system using the Hercules spectrograph at the 1-m McLellan telescope at Mt John University Observatory (MJUO) in New Zealand. The goal of our project is to obtain such a large number of radial velocity measurements with sufficiently high temporal sampling to become sensitive to signals of Earth-mass planets in the habitable zones of the two stars in this binary system. Over the past years, we have collected more than 45,000 spectra for both stars combined. These data are currently processed by an advanced version of our radial velocity reduction pipeline, which eliminates the effect of spectral cross-contamination. Here we present simulations of the expected detection sensitivity to low-mass planets in the habitable zone by the Hercules program for various noise levels. We also discuss our expected sensitivity to the purported Earth-mass planet in an 3.24-d orbit announced by Dumusque et al.~(2012).Comment: 16 pages, 7 figures, accepted for publication in the International Journal of Astrobiolog

    A Low-Mass Planet with a Possible Sub-Stellar-Mass Host in Microlensing Event MOA-2007-BLG-192

    Full text link
    We report the detection of an extrasolar planet of mass ratio q ~ 2 x 10^(-4) in microlensing event MOA-2007-BLG-192. The best fit microlensing model shows both the microlensing parallax and finite source effects, and these can be combined to obtain the lens masses of M = 0.060 (+0.028 -0.021) M_sun for the primary and m = 3.3 (+4.9 -1.6) M_earth for the planet. However, the observational coverage of the planetary deviation is sparse and incomplete, and the radius of the source was estimated without the benefit of a source star color measurement. As a result, the 2-sigma limits on the mass ratio and finite source measurements are weak. Nevertheless, the microlensing parallax signal clearly favors a sub-stellar mass planetary host, and the measurement of finite source effects in the light curve supports this conclusion. Adaptive optics images taken with the Very Large Telescope (VLT) NACO instrument are consistent with a lens star that is either a brown dwarf or a star at the bottom of the main sequence. Follow-up VLT and/or Hubble Space Telescope (HST) observations will either confirm that the primary is a brown dwarf or detect the low-mass lens star and enable a precise determination of its mass. In either case, the lens star, MOA-2007-BLG-192L, is the lowest mass primary known to have a companion with a planetary mass ratio, and the planet, MOA-2007-BLG-192Lb, is probably the lowest mass exoplanet found to date, aside from the lowest mass pulsar planet.Comment: Accepted for publication in the Astrophysical Journal. Scheduled for the Sept. 1, 2008 issu

    MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy

    Full text link
    We analyze the Galactic bulge microlensing event MOA-2003-BLG-37. Although the Einstein timescale is relatively short, t_e=43 days, the lightcurve displays deviations consistent with parallax effects due to the Earth's accelerated motion. We show that the chi^2 surface has four distinct local minima that are induced by the ``jerk-parallax'' degeneracy, with pairs of solutions having projected Einstein radii, \tilde r_e = 1.76 AU and 1.28 AU, respectively. This is the second event displaying such a degeneracy and the first toward the Galactic bulge. For both events, the jerk-parallax formalism accurately describes the offsets between the different solutions, giving hope that when extra solutions exist in future events, they can easily be found. However, the morphologies of the chi^2 surfaces for the two events are quite different, implying that much remains to be understood about this degeneracy.Comment: 19 pages, 3 figures, 1 table, ApJ, in press, 1 July 200

    Microlensing optical depth towards the Galactic bulge from MOA observations during 2000 with Difference Image Analysis

    Get PDF
    We analyze the data of the gravitational microlensing survey carried out by by the MOA group during 2000 towards the Galactic Bulge (GB). Our observations are designed to detect efficiently high magnification events with faint source stars and short timescale events, by increasing the the sampling rate up to 6 times per night and using Difference Image Analysis (DIA). We detect 28 microlensing candidates in 12 GB fields corresponding to 16 deg^2. We use Monte Carlo simulations to estimate our microlensing event detection efficiency, where we construct the I-band extinction map of our GB fields in order to find dereddened magnitudes. We find a systematic bias and large uncertainty in the measured value of the timescale tEoutt_{\rm Eout} in our simulations. They are associated with blending and unresolved sources, and are allowed for in our measurements. We compute an optical depth tau = 2.59_{-0.64}^{+0.84} \times 10^{-6} towards the GB for events with timescales 0.3<t_E<200 days. We consider disk-disk lensing, and obtain an optical depth tau_{bulge} = 3.36_{-0.81}^{+1.11} \times 10^{-6}[0.77/(1-f_{disk})] for the bulge component assuming a 23% stellar contribution from disk stars. These observed optical depths are consistent with previous measurements by the MACHO and OGLE groups, and still higher than those predicted by existing Galactic models. We present the timescale distribution of the observed events, and find there are no significant short events of a few days, in spite of our high detection efficiency for short timescale events down to t_E = 0.3 days. We find that half of all our detected events have high magnification (>10). These events are useful for studies of extra-solar planets.Comment: 65 pages and 30 figures, accepted for publication in ApJ. A systematic bias and uncertainty in the optical depth measurement has been quantified by simulation

    Discovery of the optical counterpart and early optical observations of GRB990712

    Get PDF
    We present the discovery observations of the optical counterpart of the gamma-ray burster GRB990712 taken 4.16 hours after the outburst and discuss its light curve observed in the V, R and I bands during the first ~35 days after the outburst. The observed light curves were fitted with a power-law decay for the optical transient (OT), plus an additional component which was treated in two different ways. First, the additional component was assumed to be an underlying galaxy of constant brightness. The resulting slope of the decay is 0.97+/-0.05 and the magnitudes of the underlying galaxy are: V = 22.3 +/- 0.05, R = 21.75 +/- 0.05 and I = 21.35 +/- 0.05. Second, the additional component was assumed to be a galaxy plus an underlying supernova with a time-variable brightness identical to that of GRB980425, appropriately scaled to the redshift of GRB990712. The resulting slope of the decay is similar, but the goodness-of-fit is worse which would imply that either this GRB is not associated with an underlying supernova or the underlying supernova is much fainter than the supernova associated with GRB980425. The galaxy in this case is fainter: V = 22.7 +/- 0.05, R = 22.25 +/- 0.05 and I = 22.15 +/- 0.05; and the OT plus the underlying supernova at a given time is brighter. Measurements of the brightnesses of the OT and the galaxy by late-time HST observation and ground-based observations can thus assess the presence of an underlying supernova.Comment: To appear in Ap

    Probing the atmosphere of a solar-like star by galactic microlensing at high magnification

    Full text link
    We report a measurement of limb darkening of a solar-like star in the very high magnification microlensing event MOA 2002-BLG-33. A 15 hour deviation from the light curve profile expected for a single lens was monitored intensively in V and I passbands by five telescopes spanning the globe. Our modelling of the light curve showed the lens to be a close binary system whose centre-of-mass passed almost directly in front of the source star. The source star was identified as an F8-G2 main sequence turn-off star. The measured stellar profiles agree with current stellar atmosphere theory to within ~4% in two passbands. The effective angular resolution of the measurements is <1 micro-arcsec. These are the first limb darkening measurements obtained by microlensing for a Solar-like star.Comment: Accepted for publication in A&A Letters. 5 pages, 2 embedded colour ps figures plus 1 jpg figure. Version with all figures embedded available from: http://www.roe.ac.uk/~iab/moa33paper
    • 

    corecore