124 research outputs found

    Absence of TERT promoter mutations in colorectal precursor lesions and cancer

    Get PDF
    Hotspot mutations (c.-124bp G > A and c.-146bp G > A) in the promoter region of the TERT gene have been recently described in several types of solid tumors, including glioma, bladder, thyroid, liver and skin neoplasms. However, knowledge with respect to colorectal precursor lesions and cancer is scarce. In the present study we aimed to determine the frequency of hotspot TERT promoter mutations in 145 Brazilian patients, including 103 subjects with precursor lesions and 42 with colorectal carcinomas, and we associated the presence of such mutations with the patients clinical-pathological features. The mutation analysis was conclusive in 123 cases, and none of the precursor and colorectal carcinoma cases showed TERT promoter mutations. We conclude that TERT mutations are not a driving factor in colorectal carcinogenesis.This study was financially partially supported by Barretos Cancer Hospital Internal Research Funds (PAIP) to participating authorsinfo:eu-repo/semantics/publishedVersio

    Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms

    Get PDF
    Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability

    Low frequency of TERT promoter mutations in gastrointestinal stromal tumors (GISTs).

    Get PDF
    Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) gene, mainly at positions c. − 124 and c. − 146 bp, are frequent in several human cancers; yet its presence in gastrointestinal stromal tumor (GIST) has not been reported to date. Herein, we searched for the presence and clinicopathological association of TERT promoter mutations in genomic DNA from 130 bona fide GISTs. We found TERT promoter mutations in 3.8% (5/130) of GISTs. The c. − 124C4T mutation was the most common event, present in 2.3% (3/130), and the c. − 146C4T mutation in 1.5% (2/130) of GISTs. No significant association was observed between TERT promoter mutation and patient’s clinicopathological features. The present study establishes the low frequency (4%) of TERT promoter mutations in GISTs. Further studies are required to confirm our findings and to elucidate the hypothetical biological and clinical impact of TERT promoter mutation in GIST pathogenesis.This project was partially supported by Barretos Cancer Hospital internal research funds (PAIP) and CNPq Universal Grant (476192/2013-7) to RMR. NCC is a recipient of an FAPESP Doctoral Fellowship (2013/25787-3). Further funding from the project ‘Microenvironment, metabolism and cancer’ that was partially supported by Programa Operacional Regional do Norte (ON.2—O Novo Norte) under the Quadro de Referência Estratégico Nacional (QREN) and the Fundo Europeu de Desenvolvimento Regional (FEDER). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education that is partially supported by the FCT

    Correlation of histopathologic characteristics to protein expression and function in malignant melanoma

    Get PDF
    BACKGROUND: Metastatic melanoma is still one of the most prevalent skin cancers, which upon progression has neither a prognostic marker nor a specific and lasting treatment. Proteomic analysis is a versatile approach with high throughput data and results that can be used for characterizing tissue samples. However, such analysis is hampered by the complexity of the disease, heterogeneity of patients, tumors, and samples themselves. With the long term aim of quest for better diagnostics biomarkers, as well as predictive and prognostic markers, we focused on relating high resolution proteomics data to careful histopathological evaluation of the tumor samples and patient survival information. PATIENTS AND METHODS: Regional lymph node metastases obtained from ten patients with metastatic melanoma (stage III) were analyzed by histopathology and proteomics using mass spectrometry. Out of the ten patients, six had clinical follow-up data. The protein deep mining mass spectrometry data was related to the histopathology tumor tissue sections adjacent to the area used for deep-mining. Clinical follow-up data provided information on disease progression which could be linked to protein expression aiming to identify tissue-based specific protein markers for metastatic melanoma and prognostic factors for prediction of progression of stage III disease. RESULTS: In this feasibility study, several proteins were identified that positively correlated to tumor tissue content including IF6, ARF4, MUC18, UBC12, CSPG4, PCNA, PMEL and MAGD2. The study also identified MYC, HNF4A and TGFB1 as top upstream regulators correlating to tumor tissue content. Other proteins were inversely correlated to tumor tissue content, the most significant being; TENX, EHD2, ZA2G, AOC3, FETUA and THRB. A number of proteins were significantly related to clinical outcome, among these, HEXB, PKM and GPNMB stood out, as hallmarks of processes involved in progression from stage III to stage IV disease and poor survival. CONCLUSION: In this feasibility study, promising results show the feasibility of relating proteomics to histopathology and clinical outcome, and insight thus can be gained into the molecular processes driving the disease. The combined analysis of histological features including the sample cellular composition with protein expression of each metastasis enabled the identification of novel, differentially expressed proteins. Further studies are necessary to determine whether these putative biomarkers can be utilized in diagnostics and prognostic prediction of metastatic melanoma

    Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer

    Get PDF
    Background Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.info:eu-repo/semantics/publishedVersio

    Telomerase promoter mutations in cancer: an emerging molecular biomarker?

    Get PDF
    João Vinagre, Vasco Pinto and Ricardo Celestino contributed equally to the manuscript.Cell immortalization has been considered for a long time as a classic hallmark of cancer cells. Besides telomerase reactivation, such immortalization could be due to telomere maintenance through the “alternative mechanism of telomere lengthening” (ALT) but the mechanisms underlying both forms of reactivation remained elusive. Mutations in the coding region of telomerase gene are very rare in the cancer setting, despite being associated with some degenerative diseases. Recently, mutations in telomerase (TERT) gene promoter were found in sporadic and familial melanoma and subsequently in several cancer models, notably in gliomas, thyroid cancer and bladder cancer. The importance of these findings has been reinforced by the association of TERT mutations in some cancer types with tumour aggressiveness and patient survival. In the first part of this review, we summarize the data on the biology of telomeres and telomerase, available methodological approaches and non-neoplastic diseases associated with telomere dysfunction. In the second part, we review the information on telomerase expression and genetic alterations in the most relevant types of cancer (skin, thyroid, bladder and central nervous system) on record, and discuss the value of telomerase as a new biomarker with impact on the prognosis and survival of the patients and as a putative therapeutic target
    corecore