134 research outputs found
A focus on science, engineering, and education for sustainability
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95049/1/eost18270.pd
The International Opportunities Fund for global change research
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95120/1/eost18754.pd
Temporal dynamics of white and gray matter plasticity during motor skill acquisition: a comparative diffusion tensor imaging and multiparametric mapping analysis
Learning new motor skills relies on neural plasticity within motor and limbic systems. This study uniquely combined diffusion tensor imaging and multiparametric mapping MRI to detail these neuroplasticity processes. We recruited 18 healthy male participants who underwent 960Â min of training on a computer-based motion game, while 14 were scanned without training. Diffusion tensor imaging, which quantifies tissue microstructure by measuring the capacity for, and directionality of, water diffusion, revealed mostly linear changes in white matter across the corticospinal-cerebellar-thalamo-hippocampal circuit. These changes related to performance and reflected different responses to upper- and lower-limb training in brain areas with known somatotopic representations. Conversely, quantitative MRI metrics, sensitive to myelination and iron content, demonstrated mostly quadratic changes in gray matter related to performance and reflecting somatotopic representations within the same brain areas. Furthermore, while myelin and iron-sensitive multiparametric mapping MRI was able to describe time lags between different cortical brain systems, diffusion tensor imaging detected time lags within the white matter of the motor systems. These findings suggest that motor skill learning involves distinct phases of white and gray matter plasticity across the sensorimotor network, with the unique combination of diffusion tensor imaging and multiparametric mapping MRI providing complementary insights into the underlying neuroplastic responses
Coherent, time-shifted patterns of microstructural plasticity during motor-skill learning
Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1 hour of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network
Joint-level responses to tofacitinib and methotrexate: a post hoc analysis of data from ORAL Start
BACKGROUND: Rheumatoid arthritis (RA) has a variable impact on different synovial joints, with inflammation being more commonly observed in some joints than others. Emerging evidence suggests that the anatomical variation in pathophysiology could result in differential responses to treatments across the joints, both within and between modes of action. This analysis aimed to characterize joint-specific responses to tofacitinib and methotrexate monotherapy in patients with RA.
METHODS: This was a post hoc analysis of data from the phase III trial ORAL Start (NCT01039688), in methotrexate-naĂŻve patients with RA. A paired joint pathology score (PJPS), derived from bilateral tender/swollen joint counts, was calculated. The percentage change from baseline in PJPS (%âPJPS) and treatment-specific responses (tofacitinib 5 and 10 mg twice daily [BID] vs methotrexate; tofacitinib 5 vs 10 mg BID) for each patient joint pair, except for those with baseline/post-baseline PJPSâ=â0, were calculated at month 3, month 6, and month 12. Radiographic progression was similarly assessed using the Modified Total Sharp Score at month 6 and month 12.
RESULTS: In methotrexate-naĂŻve patients, differences in %âPJPS demonstrated greater responses with tofacitinib vs methotrexate in most joint locations. Lesser responses with tofacitinib vs methotrexate were observed in most joints of the feet, particularly at month 12. Despite this, radiographic progression at month 12 was significantly worse in the foot (and metacarpophalangeal) joints of patients receiving methotrexate vs tofacitinib.
CONCLUSION: We observed variation in joint-specific responses with tofacitinib and methotrexate monotherapy. Despite a proximal-distal efficacy gradient, with better clinical responses in the feet, patients receiving methotrexate monotherapy demonstrated more radiographic progression in the foot joints compared with those receiving tofacitinib. These findings suggest that body site- and therapy-specific characteristics may interact to produce differential treatment responses
Coherent, time-shifted patterns of microstructural plasticity during motor-skill learning
Motor skill learning relies on neural plasticity in the motor and limbic systems. However, the spatial and temporal characteristics of these changes-and their microstructural underpinnings-remain unclear. Eighteen healthy males received 1Â h of training in a computer-based motion game, 4 times a week, for 4 consecutive weeks, while 14 untrained participants underwent scanning only. Performance improvements were observed in all trained participants. Serial myelin- and iron-sensitive multiparametric mapping at 3T during this period of intensive motor skill acquisition revealed temporally and spatially distributed, performance-related microstructural changes in the grey and white matter across a corticospinal-cerebellar-hippocampal circuit. Analysis of the trajectory of these transient changes suggested time-shifted cascades of plasticity from the dominant sensorimotor system to the contralateral hippocampus. In the cranial corticospinal tracts, changes in myelin-sensitive metrics during training in the posterior limb of the internal capsule were of greater magnitude in those who trained their upper limbs vs. lower limb trainees. Motor skill learning is associated with waves of grey and white matter plasticity, across a broad sensorimotor network
Minimum toe clearance: probing the neural control of locomotion
Minimum toe clearance (MTC) occurs during a highly dynamic phase of the gait cycle and is associated with the highest risk of unintentional contact with obstacles or the ground. Age, cognitive function, attention and visual feedback affect foot clearance but how these factors interact to influence MTC control is not fully understood. We measured MTC in 121 healthy individuals aged 20-80 under four treadmill walking conditions; normal walking, lower visual field restriction and two Stroop colour/word naming tasks of two difficulty levels. Competition for cognitive and attentional resources from the Stroop task resulted in significantly lower mean MTC in older adults, with the difficult Stroop task associated with a higher frequency of extremely low MTC values and subsequently an increased modelled probability of tripping in this group. While older adults responded to visual restriction by markedly skewing MTC distributions towards higher values, this condition was also associated with frequent, extremely low MTC values. We reveal task-specific, age-dependent patterns of MTC control in healthy adults. Age-related differences are most pronounced during heavy, distracting cognitive load. Analysis of critically-low MTC values during dual-task walking may have utility in the evaluation of locomotor control and fall risk in older adults and patients with motor control deficits
Analyzing a Single Nucleotide Polymorphism (SNP) in Schizophrenia: A meta-analysis approach
Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming taskâprimarily involving left hemisphere structuresâwould reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18â80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetryâan index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the rightâincreased significantly under dual-task conditions in those aged 40â59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control
Probing Corticospinal Control During Different Locomotor Tasks Using Detailed Time-Frequency Analysis of Electromyograms
Locomotion relies on the fine-tuned coordination of different muscles which are controlled by particular neural circuits. Depending on the attendant conditions, walking patterns must be modified to optimally meet the demands of the task. Assessing neuromuscular control during dynamic conditions is methodologically highly challenging and prone to artifacts. Here we aim at assessing corticospinal involvement during different locomotor tasks using non-invasive surface electromyography. Activity in tibialis anterior (TA) and gastrocnemius medialis (GM) muscles was monitored by electromyograms (EMGs) in 27 healthy volunteers (11 female) during regular walking, walking while engaged in simultaneous cognitive dual tasks, walking with partial visual restriction, and skilled, targeted locomotion. Whereas EMG intensity of the TA and GM was considerably altered while walking with partial visual restriction and during targeted locomotion, dual-task walking induced only minor changes in total EMG intensity compared to regular walking. Targeted walking resulted in enhanced EMG intensity of GM in the frequency range associated with Piper rhythm synchronies. Likewise, targeted walking induced enhanced EMG intensity of TA at the Piper rhythm frequency around heelstrike, but not during the swing phase. Our findings indicate task- and phase-dependent modulations of neuromuscular control in distal leg muscles during various locomotor conditions in healthy subjects. Enhanced EMG intensity in the Piper rhythm frequency during targeted walking points toward enforced corticospinal drive during challenging locomotor tasks. These findings indicate that comprehensive time-frequency EMG analysis is able to gauge cortical involvement during different movement programs in a non-invasive manner and might be used as complementary diagnostic tool to assess baseline integrity of the corticospinal tract and to monitor changes in corticospinal drive as induced by neurorehabilitation interventions or during disease progression
Methods to estimate aboveground wood productivity from long-term forest inventory plots
Forest inventory plots are widely used to estimate biomass carbon storage and its change over time. While there has been much debate and exploration of the analytical methods for calculating biomass, the methods used to determine rates of wood production have not been evaluated to the same degree. This affects assessment of ecosystem fluxes and may have wider implications if inventory data are used to parameterise biospheric models, or scaled to large areas in assessments of carbon sequestration. Here we use a dataset of 35 long-term Amazonian forest inventory plots to test different methods of calculating wood production rates. These address potential biases associated with three issues that routinely impact the interpretation of tree measurement data: (1) changes in the point of measurement (POM) of stem diameter as trees grow over time; (2) unequal length of time between censuses; and (3) the treatment of trees that pass the minimum diameter threshold (ârecruitsâ). We derive corrections that control for changing POM height, that account for the unobserved growth of trees that die within census intervals, and that explore different assumptions regarding the growth of recruits during the previous census interval. For our dataset we find that annual aboveground coarse wood production (AGWP; in Mg haâ1 yearâ1 of dry matter) is underestimated on average by 9.2% if corrections are not made to control for changes in POM height. Failure to control for the length of sampling intervals results in a mean underestimation of 2.7% in annual AGWP in our plots for a mean interval length of 3.6 years. Different methods for treating recruits result in mean differences of up to 8.1% in AGWP. In general, the greater the length of time a plot is sampled for and the greater the time elapsed between censuses, the greater the tendency to underestimate wood production. We recommend that POM changes, census interval length, and the contribution of recruits should all be accounted for when estimating productivity rates, and suggest methods for doing this.European UnionUK Natural Environment Research CouncilGordon and Betty Moore FoundationCASE sponsorship from UNEP-WCMCRoyal Society University Research FellowshipERC Advanced Grant âTropical Forests in the Changing Earth SystemâRoyal Society Wolfson Research Merit Awar
- âŠ