18 research outputs found

    Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments

    Get PDF
    Abstract Background Deep-sea hydrothermal vents are hotspots for productivity and biodiversity. Thermal pyrolysis and circulation produce fluids rich in hydrocarbons and reduced compounds that stimulate microbial activity in surrounding sediments. Several studies have characterized the diversity of Guaymas Basin (Gulf of California) sediment-inhabiting microorganisms; however, many of the identified taxa lack cultures or genomic representations. Here, we resolved the metabolic potential and community-level interactions of these diverse communities by reconstructing and analyzing microbial genomes from metagenomic sequencing data. Results We reconstructed 115 microbial metagenome-assembled genomes comprising 27 distinct archaeal and bacterial phyla. The archaea included members of the DPANN and TACK superphyla, Bathyarchaeota, novel Methanosarcinales (GoM-Arc1), and anaerobic methane-oxidizing lineages (ANME-1). Among the bacterial phyla, members of the Bacteroidetes, Chloroflexi, and Deltaproteobacteria were metabolically versatile and harbored potential pathways for hydrocarbon and lipid degradation and a variety of respiratory processes. Genes encoding enzymes that activate anaerobic hydrocarbons for degradation were detected in Bacteroidetes, Chloroflexi, Latescibacteria, and KSB1 phyla, while the reconstructed genomes for most candidate bacteria phyla (Aminicenantes, Atribacteria, Omnitrophica, and Stahlbacteria) indicated a fermentative metabolism. Newly obtained GoM-Arc1 archaeal genomes encoded novel pathways for short-chain hydrocarbon oxidation by alkyl-coenzyme M formation. We propose metabolic linkages among different functional groups, such as fermentative community members sharing substrate-level interdependencies with sulfur- and nitrogen-cycling microbes. Conclusions Overall, inferring the physiologies of archaea and bacteria from metagenome-assembled genomes in hydrothermal deep-sea sediments has revealed potential mechanisms of carbon cycling in deep-sea sediments. Our results further suggest a network of biogeochemical interdependencies in organic matter utilization, hydrocarbon degradation, and respiratory sulfur cycling among deep-sea-inhabiting microbial communities

    Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill

    Get PDF
    The Deepwater Horizon blowout in the Gulf of Mexico in 2010, one of the largest marine oil spills1, changed bacterial communities in the water column and sediment as they responded to complex hydrocarbon mixtures2-4. Shifts in community composition have been correlated to the microbial degradation and use of hydrocarbons2,5,6, but the full genetic potential and taxon-specific metabolisms of bacterial hydrocarbon degraders remain unresolved. Here, we have reconstructed draft genomes of marine bacteria enriched from sea surface and deep plume waters of the spill that assimilate alkane and polycyclic aromatic hydrocarbons during stable-isotope probing experiments, and we identify genes of hydrocarbon degradation pathways. Alkane degradation genes were ubiquitous in the assembled genomes. Marinobacter was enriched with n-hexadecane, and uncultured Alpha- and Gammaproteobacteria populations were enriched in the polycyclic-aromatic-hydrocarbon-degrading communities and contained a broad gene set for degrading phenanthrene and naphthalene. The repertoire of polycyclic aromatic hydrocarbon use varied among different bacterial taxa and the combined capabilities of the microbial community exceeded those of its individual components, indicating that the degradation of complex hydrocarbon mixtures requires the non-redundant capabilities of a complex oil-degrading community

    Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

    Get PDF
    In the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors— members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells

    Metabolic Roles of Uncultivated Bacterioplankton Lineages in the Northern Gulf of Mexico "Dead Zone".

    Get PDF
    This is the final version of the article. Available from American Society for Microbiology via the DOI in this record.Marine regions that have seasonal to long-term low dissolved oxygen (DO) concentrations, sometimes called "dead zones," are increasing in number and severity around the globe with deleterious effects on ecology and economics. One of the largest of these coastal dead zones occurs on the continental shelf of the northern Gulf of Mexico (nGOM), which results from eutrophication-enhanced bacterioplankton respiration and strong seasonal stratification. Previous research in this dead zone revealed the presence of multiple cosmopolitan bacterioplankton lineages that have eluded cultivation, and thus their metabolic roles in this ecosystem remain unknown. We used a coupled shotgun metagenomic and metatranscriptomic approach to determine the metabolic potential of Marine Group II Euryarchaeota, SAR406, and SAR202. We recovered multiple high-quality, nearly complete genomes from all three groups as well as candidate phyla usually associated with anoxic environments-Parcubacteria (OD1) and Peregrinibacteria Two additional groups with putative assignments to ACD39 and PAUC34f supplement the metabolic contributions by uncultivated taxa. Our results indicate active metabolism in all groups, including prevalent aerobic respiration, with concurrent expression of genes for nitrate reduction in SAR406 and SAR202, and dissimilatory nitrite reduction to ammonia and sulfur reduction by SAR406. We also report a variety of active heterotrophic carbon processing mechanisms, including degradation of complex carbohydrate compounds by SAR406, SAR202, ACD39, and PAUC34f. Together, these data help constrain the metabolic contributions from uncultivated groups in the nGOM during periods of low DO and suggest roles for these organisms in the breakdown of complex organic matter.IMPORTANCE Dead zones receive their name primarily from the reduction of eukaryotic macrobiota (demersal fish, shrimp, etc.) that are also key coastal fisheries. Excess nutrients contributed from anthropogenic activity such as fertilizer runoff result in algal blooms and therefore ample new carbon for aerobic microbial metabolism. Combined with strong stratification, microbial respiration reduces oxygen in shelf bottom waters to levels unfit for many animals (termed hypoxia). The nGOM shelf remains one of the largest eutrophication-driven hypoxic zones in the world, yet despite its potential as a model study system, the microbial metabolisms underlying and resulting from this phenomenon-many of which occur in bacterioplankton from poorly understood lineages-have received only preliminary study. Our work details the metabolic potential and gene expression activity for uncultivated lineages across several low DO sites in the nGOM, improving our understanding of the active biogeochemical cycling mediated by these "microbial dark matter" taxa during hypoxia

    Metagenomic assembly and prokaryotic metagenome-assembled genome sequences from the northern gulf of mexico "dead zone"

    No full text
    Coastal regions experiencing declining dissolved oxygen are increasing in number and severity around the world. However, despite the importance of microbial metabolism in coastal hypoxia, few metagenomic surveys exist. Our data set from within the second largest human-caused hypoxic region provides opportunities to more deeply explore the microbiology of these systems

    Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

    Get PDF
    In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes(1). However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved(2-4). Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells
    corecore