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1 The Deepwater Horizon blowout in the Gulf of Mexico in 2010,
2 one of the largest marine oil spills1, changed bacterial commu-
3 nities in the water column and sediment as they responded to
4 complex hydrocarbon mixtures2–4. Shifts in community compo-
5 sition have been correlated to the microbial degradation and
6 use of hydrocarbons2,5,6, but the full genetic potential and
7 taxon-specific metabolisms of bacterial hydrocarbon degraders
8 remain unresolved. Here, we have reconstructed draft genomes
9 of marine bacteria enriched from sea surface and deep plume
10 waters of the spill that assimilate alkane and polycyclic aromatic
11 hydrocarbons during stable-isotope probing experiments, and we
12 identify genes of hydrocarbon degradation pathways. Alkane
13 degradation genes were ubiquitous in the assembled genomes.
14 Marinobacter was enriched with n-hexadecane, and uncultured
15 Alpha- and Gammaproteobacteria populations were enriched in
16 the polycyclic aromatic hydrocarbon-degrading communities and
17 contained a broad gene set for degrading phenanthrene and
18 naphthalene. The repertoire of polycyclic aromatic hydrocarbon
19 use varied among different bacterial taxa and the combined
20 capabilities of the microbial community exceeded those of
21 its individual components, indicating that the degradation of
22 complex hydrocarbon mixtures requires the non-redundant
23 capabilities of a complex oil-degrading community.Q1
24 Marine microorganisms derive energy and carbon from the degra-
25 dation of petroleum hydrocarbons and drive the bioremediation
26 process during anthropogenic oil spills, such as the Deepwater
27 Horizon (DWH) spill2,4,7–9. Various uncultured bacteria, primarily
28 belonging to Oceanospirillales and other Gammaproteobacteria,
29 were enriched during the DWH spill and are believed to have
30 played a major role in oil degradation2,3,10–12. However, this assump-
31 tion relies on the dominance of these organisms in environmental
32 sequencing surveys, whereas the metabolic potential and pathways
33 for degrading hydrocarbons in bacterial populations, which demon-
34 strably assimilate these compounds, remain to be determined. To
35 address this question, we obtained ∼113 Gb of shotgun metagenomic
36 data from hydrocarbon-degrading enrichments using stable-isotope
37 probing (SIP) experiments13. Enrichments were obtained fromweath-
38 ered hydrocarbons floating on the sea surface and from the subsurface
39 hydrocarbon plume, collected during the DWH oil spill in 2010. The
40 plume sample was incubated with 13C-labelled n-hexadecane (HEX),
41 and the sea surface sample was separately incubated with 13C-labelled
42 naphthalene (NAP) or phenanthrene (PHE) in SIP experiments13.
43 De novo assembly and (tetranucleotide signature) binning of meta-
44 genomic sequences from the 13C-labelled fractions allowed the
45 reconstruction of 7 high-quality (completeness of 52–95%) and 17

46fragmentary draft genomes (completeness <50%), as well as ∼13%
47of unbinned scaffolds (see Methods, Supplementary Table 1 and
48Supplementary Fig. 1).
49We first annotated genes within all assembled genomes.
50Taxonomic assignment of annotated genes in the HEX, NAP
51and PHE assemblies revealed distinct bacterial communities
52(Supplementary Fig. 2a,b). Marinobacter and Alcanivorax domi-
53nated the HEX-degrading community, and Alteromonas and
54Cycloclasticus were abundant in NAP and PHE samples, respect-
55ively. This community spectrum coincided with results from the
56previous SIP-based analysis of the same samples using 16S rRNA
57clone sequencing13. To identify taxa representing the seven high-
58quality draft genomes, we constructed a phylogenetic tree using
59up to 15 ribosomal proteins (Fig. 1 and Supplementary Table 1).
60We recovered a 95% complete Marinobacter genome from the
61HEX enrichment, designated H-Mar (99% inferred protein simi-
62larity to Marinobacter salarius R9SW1, Fig. 1 and Supplementary
63Table 1). From the NAP-degrading community we reconstructed
64two gammaproteobacterial genomes belonging to Oceanospirillales
65(N-Alc, 73% similar to Alcanivorax sp. 43B_GOM-46m, 84% com-
66plete) and Alteromonadales (N-Alt, 86% similar to Alteromonas
67macleodii English Channel 673, 80% complete). An additional
6893% complete alphaproteobacterial genome belonged to the order
69Rhodospirillales (N-Tha, 99% similar to Thalassospira profundi-
70maris WP0211). Three genomes from the PHE-degrading commu-
71nities included a bacterium 83% similar to Cycloclasticus pugetii
72PS-134H (P-Cyc, 52% complete), an Oceanospirillales member
73with 73% similarity to Neptuniibacter caesariensis MED92 (P-Nep,
7486% complete) and a member of the Alteromonadales with 64%
75similarity to Colwellia psychrerythraea 34H (P-Col, 70% complete).
76The NAP-enriched taxa Rhodospirillales, Oceanospirillales and
77Alteromonadales (N-Tha, N-Alc and N-Alt) were previously associ-
78ated with hydrocarbon degradation. For example, isolates of the
79order Alteromonadales showed alkane and polycyclic aromatic
80hydrocarbon (PAH)-degrading activity in previous SIP exper-
81iments13. The order Rhodospirillales accumulated during the
82DWH spill in sea surface samples, and isolates of this order, such
83as Thalassospira tepidiphila, degrade PAHs3,14. We also assembled
84one genome belonging to Alcanivorax from the NAP-degrading
85community (N-Alc), a genus that was barely detected in the spill
86itself but was present in the previous SIP experiments13. Additionally,
87Alcanivorax was abundant in HEX enrichments (Supplementary
88Fig. 2b). Although Alcanivorax isolates degrade alkane hydro-
89carbons and none have been described to metabolize PAHs13,15,
90Alcanivorax was previously detected in bacterial consortia growing
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1 on pyrene as the sole carbon source16,17. Thus, the NAP enrichment
2 of Alcanivorax supports a broader versatility in Alcanivorax for
3 degrading not only alkanes but also PAHs, potentially by participating
4 in bacterial consortia that fully metabolize PAHs.
5 Focusing on the PHE-degrading community, the genera
6 Cycloclasticus, Colwellia and Neptuniibacter (corresponding to
7 P-Cyc, P-Col and P-Nep) represented 66, 13 and 3% of clones in
8 previous PHE-SIP experiments, respectively13. Notably, the
9 Cycloclasticus 16S rRNA phylotype recovered from the previous SIP
10 study was >99% similar to the most dominantCycloclasticus phylotype
11 that was enriched at the sea surface during the spill13. Concordantly,
12 Colwellia was enriched in laboratory experiments in dispersant-oil
13 microcosms18. Thus, the assembled genomes represent abundant, as
14 well as rare, hydrocarbon-degradingDWH spill community members.
15 16S rRNA gene sequences recovered from the SIP assemblies co-
16 clustered with sequences derived from the previous SIP experiments
17 and partially with sequences enriched in surface and plume samples
18 during the spill (Supplementary Fig. 3)2,3,13. These clustering patterns
19 therefore indicate that the bacterial lineages present in ourmetagenomic
20 assemblies were present during the spill and do not represent artefacts of
21 the SIP experiment. To confirm this inference, we mapped our SIP
22 assemblies to published plume-derived metagenomic and metatran-
23 scriptomic data sets10. The HEX-degrading assembly recruited 2.7
24 and 0.8% of metagenomic reads from plume and unpolluted samples,
25 respectively (Supplementary Table 2). Annotated genes from the HEX
26 assembly matched 6.3 and 1.3% of metatranscriptomic reads from
27 samples collected proximal and distal, respectively, from the plume
28 (Supplementary Table 2 and Supplementary Figs 4 and 5). This suggests
29 that genes from our assembled genomes were enriched andmore highly

30expressed with increasing hydrocarbon exposure. However, despite the
31percentage of mapped reads, we were unable to locate specific alkane-
32degradation genes, possibly due to insufficient sequencing depth that
33would allow covering non-abundant taxa (Supplementary Fig. 5).
34No metagenomic data set from the sea surface of the spill is available;
35but based on previous 16S rRNA gene studies, Alphaproteobacteria
36(that is, order Rhodospirillales) as well as Gammaproteobacteria
37(orders Alteromonadales and Oceanospirillales) were enriched in
38oil-contaminated sea surface samples3. Thus, the lineages recon-
39structed in our assemblies reflect (or resemble) those enriched in
40hydrocarbon-contaminated sea surface communities.
41To identify genes that enabled bacterial community members to
42be enriched during the DWH spill, we compared the gene content
43between the different hydrocarbon-degrading communities obtained
44in the SIP assemblies. Of the detected 4,756 unique gene functions,
45∼40% were shared and 4, 13 and 22% were unique among the
46HEX, NAP and PHE assemblies, respectively (Supplementary Fig. 6
47and Supplementary Data 1). The PHE enrichment showed selection
48for serine/threonine kinases, while the HEX samples encoded for
49abundant short-chain dehydrogenases and the NAP assembly was
50enriched for tripartite ATP-independent periplasmic (TRAP) trans-
51porters. Q2The serine/threonine kinases phosphorylate serine, threonine
52and tyrosine are proposed mediators of bacteria–bacteria interactions,
53while TRAP transporters function in osmoregulated solute transport19,20.
54Additionally, several functional categories were present in individ-
55ual genomic bins (Fig. 2 and Supplementary Data 2). Five of seven
56genomes carried genes for bacterial chemotaxis and six of seven
57for flagella biosynthesis, hinting at active motility and therefore the
58ability to move towards oil substrates. Additionally, P-Col encoded
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Figure 1 | Phylogenetic characterization of genomic bins reconstructed from three SIP enrichments. Maximum-likelihood-based phylogenetic tree of up to
15 concatenated ribosomal proteins (rpL2, 3, 4, 5, 6, 14, 15, 18, 22, 24 and rpS3, 8, 10, 17, 19) from seven high-quality genomes assembled from the
n-hexadecane (H), naphthalene (N) and phenanthrene (P) SIP enrichments (bold). Two genomes from previously published DWH plume-derived
metagenomes are indicated in italics10,46. Q17Bootstrap values were generated using MrBayes. Two Planctomycetes strains were used as outgroup. Black, grey and
white circles: nodes with bootstrap values of 100, 75–100 and <75% (1,000 replicates).
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1 for several denitrification genes (13 of 21 tested genes), including
2 norB/C, nosR and nosD, while P-Nep appears able to oxidize
3 sulfur (that is, including soxA-D and sulfite oxidase), implying rel-
4 evance for degrading sulfur-containing components of oil and the
5 applied dispersant Corexit. Suggesting physiological adaptations to
6 phosphorous and iron limitation, most genomic bins contained
7 genes relevant for phosphate starvation or siderophore biosynthesis,
8 such as staphylobactin (that is, phoH and sbnA; Supplementary Data
9 2). The presence of major genes for motility and for use of scarce
10 nutrients suggests that the enriched organisms are well adapted
11 for chemotactic motility towards their hydrocarbon substrates and
12 for physiological responses to nutrient-limiting conditions that
13 characterize oil-induced bacterial blooms21. Alternatively, these
14 genes might be of general importance for survival and growth in
15 the Gulf of Mexico.
16 To resolve the hydrocarbon degradation pathways in the assembled
17 bacterial genomes, we searched for homologues to known degradation
18 genes. An entire pathway for alkane degradation was found in H-Mar

19(Marinobacter), the dominant genus in the HEX-degrading commu-
20nity (Fig. 3a and Supplementary Figs 1 and 2). This result is consistent
21with isolates ofMarinobacter being able to degrade HEX, increasing
22Marinobacter abundance in DWH plume samples as validated by
23fluorescence in situ hybridization (FISH), and enrichment of
24genes for alkane degradation in metatranscriptomes from the
25DWH spill and the Gulf coast2,10,22,23. Additionally, we recon-
26structed the alkane-degradation pathway in most of the genomes
27from the NAP- and PHE-degrading bins (Fig. 3a). Q3However,
28based on the SIP approach, only a subset of bacteria appears to
29actively employ these pathways—Marinobacter (H-Mar)—and
30potentially outcompete other alkane-degrading bacteria, such as
31Alcanivorax (N-Alc). To validate this finding, metatranscriptomic
32sequencing could be used to map active gene expression to our
33assembled draft genomes. One unique feature of the active alkane-
34degrader H-Mar is the presence of genes encoding for the type VI
35secretion system24,25, which were mostly absent from all other
36genomic bins (Fig. 2). The type VI secretion system is involved in
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1 inter-bacterial competition and has been discussed to be relevant
2 for alkane assimilation24,25, and thus could provide H-Mar with a
3 competitive advantage over other non-active alkane degraders.

4To characterize PAH degradation pathways in SIP-enriched bac-
5teria, we identified genes encoding for enzymes in both NAP- and
6PHE-degradation pathways in our assembled genomes (Fig. 3b).

Tha Alc Alt Cyc ColNepMar

CoA

FadA

3-Oxohexadecanoyl-CoA

(S)-3-Hydroxyhexadecanoyl-CoA

FadJ

trans-Hexadec-2-enoyl-CoA

PaaF

Hexadecanoyl-CoA

Acetoacetyl-CoA

(S)-3-Hydroxybutanoyl-CoA

trans-But-2-enoyl-CoA

Butanoyl-CoA

AlkB1 n-Hexadecanol

Adh1

n-Hexadecanal

Adh1

n-Hexadecanoic acid

FadD

Rubredoxin

(red)

Rubredoxin

(red)

Mar

Tha Alc Alt

Cyc Nep Col

NAP

HEX

PHE

Tha Alc Alt Cyc ColNepMar FadE

trans-O-Hydroxybenzylidenepyruvate

3-Oxoadipate enol-lactone

Acetyl-CoA

Phenanthrene

cis-3,4-Dihydrophenanthrene-3,4 dihydrodiol

4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid

PhdG

1-Hydroxy-2-naphthaldehyde

NidD

1-Hydroxy-2-naphthoic acid

PhdI

2-Carboxybenzalpyruvic acid

PhdJ

2-Carboxybenzaldehyde

PhdK

Phthalic acid
PhtAaPhthalic acid

3,4-dihydrodiol

3,4-Dihydroxy-

phthalic acid

Salicylate hydroxylase

Pht4

Phthalic acid

4,5-dihydrodiol

4,5-Dihydroxy-

phthalate

PcaI

PcaF

NidAMar

Mar

Mar

Mar Mar

Mar

CatA

cis, cis Muconate

CatB

(S)-Oxo-2,5,-dihydrofuran-

2-acetate;

(+)-Muconolactone

CatC

Mar

Mar

Mar Mar

Mar

Tha

Tha

Tha

Tha

Tha

Pht3
Tha

Tha

Tha

Tha

ThaThaTha

Tha

Tha

Tha Tha

Alc

Alc

Alc

Alc

Alc

PcaJ

Alt

Alt

Alt

Alt

Alt

Cyc Cyc

Cyc

Cyc

Cyc Cyc

Cyc

Cyc

Cyc

Cyc

Nep

Nep

Nep

ColCol

Col

Col

Col

Col

Cyc Col

Col

Nep

Nep

Mar

Tha

ThaMar

Cyc

Col

Tha

ThaMar Alc Alt

Cyc

Cyc

Cyc

Cyc Nep Col

Mar Tha

Cyc

Tha Alc

NahAa

NahAb

Naphthalene

PcaB

PcaD

PcaC PcaL

PcaH PcaG

PhtB

PhtC

PhtAb
PhtAc
PhtAd

NidB

PhnB/PhdE

PhdF

Isomerase

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

NahAc

NahB

NahC

NahD

NahE

NahF

Salicylate hydroxylase

NahAd

Pht2

n-H
exadecane

Naphthalene-1,2-diol

2-Hydroxychromene-2-carboxylate

cis-1,2-Dihydronaphthalene-1,2-diol

Salicylaldehyde

Salicylate

Catechol Protocatechuate

beta-Carboxy-cis,cis-muconate

Y-Carboxymuconolactone

3,4-Dihydroxyphenanthrene

2-Hydroxybenzochromene-2-carboxylic acid

Protocatechuate
decarboxylase

3-Oxoadipic acid

beta-Ketoadipyl-CoA

Pht5

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alc Alt Cyc ColNepMar

Tha Alt Cyc ColNepMar

Tha Alc Alt ColNepMar

Tha Alc Alt Cyc ColNepMar

Mar
Alc

Cyc
Col

Fatty acid degradation

a

b

Figure 3 | Distribution of key alkane and polycyclic hydrocarbon degradation pathways in reconstructed genomes. a, Metabolic reconstruction of the
n-hexadecane (HEX) degradation pathway within seven high-quality metagenomic bins. b, Metabolic reconstruction of naphthalene (NAP) and phenanthrene
(PHE) degradation pathways within seven high-quality genomes. Purple, green, blue: HEX, NAP and PHE-degrading bins, respectively.

LETTERS NATURE MICROBIOLOGY DOI: 10.1038/NMICROBIOL.2016.57

NATURE MICROBIOLOGY | www.nature.com/naturemicrobiology4



1 Of 41 described NAP- and PHE-degradation genes, 19 were present
2 in >50% of genomes, while a subset of genes, such as nahC, salicy-
3 late hydroxylase or phdF, were only detectable in a few genomes. For
4 example, within N-Tha, N-Alc and N-Alt, we were unable to anno-
5 tate the full known NAP-degradation pathway. N-Tha
6 (Thalassospira profundimaris) is equipped to degrade NAP to sali-
7 cylate, but lacks the salicylate hydroxylase, which converts salicylate
8 to catechol. Only the fragmentary genome NAP-25
9 (Oceanospirillales) encoded the gene for this step among the
10 assembled genomes from the NAP enrichments. Similarly, the
11 extradiol dioxygenase (PhdF), which converts 3,4-dihydroxyphe-
12 nanthrene to 2-hydroxybenzochromene-2-carboxylic acid early on
13 in the PHE-degradation pathway, was only detected in P-Cyc
14 (Cycloclasticus). Unless all pathway gaps are without exception
15 ascribed to sequencing gaps within the genomic bins, a more parsi-
16 monious interpretation of these results suggests that alternative
17 genes and enzymes for these individual steps exist, which are not
18 represented in gene databases. Alternatively, coordinated commu-
19 nity activity might be required to completely degrade polycyclic
20 hydrocarbons during the DWH spill.
21 Our study combines metagenomics and SIP, allowing the
22 assembly of genomes from active hydrocarbon-degrading bacteria
23 present during the DWH spill, and enriched from deep plume and
24 surface samples based on alkane and PAH assimilation. All
25 assembled genomes possessed pathways for alkane and PAH
26 degradation, suggesting that several taxa actively degraded
27 hydrocarbons during the spill (Fig. 3). For example, H-Mar
28 (Oceanospirillales) corresponds to Marinobacter salarius, which
29 degrades alkanes in the plume, and the bacterium that constitutes
30 N-Tha (Rhodospirillales) was responsible for degradation of PAHs
31 at the sea surface. These taxa were enriched during the spill and
32 their genes for hydrocarbon degradation were detected in the
33 plume and sea surface2,3,10,22,26. However, the plume-derived
34 genome (H-Mar) appears to be enriched only at a low relative
35 abundance compared to previous data sets, where an uncharacter-
36 ized Oceanospirillales represented >60% of sequence reads10. This
37 disparity suggests that low-abundant community members were
38 active during the spill, as observed in deep-sea hydrothermal
39 plumes27. Additionally, differences between bacterial taxa detected
40 during the DWH spill compared to SIP enrichments could be a
41 reflection of the experimental set-up. For example, no dispersant
42 was added during the experiment, but Corexit was added during
43 the spill13,28 and found to select against Marinobacter in micro-
44 cosm experiments18. Additionally, the SIP procedure required
45 incubation steps at room temperature instead of 4 °C to obtain
46 sufficient incorporation of the 13C label into DNA for SIP13.
47 Such temperature shifts have been demonstrated to induce
48 changes in plume bacterial community composition3. Whole-
49 community gene expression studies will be required to evaluate
50 the activity of our assembled genomes in their native
51 community context.
52 Within the constraints inherent to the SIP experimental
53 approach, combining SIP with metagenomics enabled us to identify
54 and analyse hydrocarbon-degrading pathways within several uncul-
55 tured bacteria. Bacteria that are usually not associated with PAH
56 degradation (that is, members of Alcanivorax in the NAP enrich-
57 ments) persisted at sufficiently high levels for metagenomic recon-
58 struction, indicating that complete pathways for the degradation
59 of PAHs may not be obligatory for individual community
60 members that thrive in PAH-degrading enrichments. Although we
61 cannot exclude that genes for hydrocarbon degradation were
62 missed in our assemblies, the apparent partitioning of key
63 pathway steps to individual community members suggests an alter-
64 nate hypothesis, in that complete degradation of a complex mixture
65 of PAHs requires the coordinated response of a complex bacterial
66 community and the coordination of its metabolic pathways.

67Methods
68Sample collection and preparation. DNA samples for metagenomic reconstruction
69were obtained from a previously published stable-isotope probing (SIP)
70experiment13. Briefly, an oil-contaminated sea surface sample (original ID PE5) was
71collected near a site of the DWH spill (28°44.175′ N, 88°22.335′ W) in the Gulf of
72Mexico on 5 May 2010. Two deep hydrocarbon plume samples (original ID B3
73and B6, biological replicates) were collected near the Macondo wellhead
74(28°41.686′ N, 88°26.081′ W) at depths of 1,170 and 1,210 m on 31 May 2010 and
75combined for the SIP experiment. Sea surface and plume samples were collected at
76∼0.86 and 3.5 m from the wellhead. SIP experiments for the plume sample (B3+B6)
77were performed with 13C-labelled HEX and for the sea surface sample (PE5) with
7813C-labelled NAP or PHE (yielding a total of three samples). Incubations containing
79solely 12C-unlabelled substrate were run in parallel to act as unlabelled controls.
80Total DNA from labelled and unlabelled incubations from each of the three SIP
81experiments was extracted as described previously29. Extracted labelled and
82unlabelled DNA (0.7 to 1.0 µg for each sample) was separated using CsCl gradient
83ultracentrifugation13. To prepare these previously processed SIP samples for
84sequencing, DNA concentrations were measured using a Qubit 3.0 Fluorometer and
85a final concentration of 10 ng µl–1 for each sample (using a total amount of 100 ng)
86from the heavy-labelled fraction was used to prepare libraries for paired-end
87Illumina (HiSeq 2500) sequencing.

88Metagenomic assembly and binning. Illumina library preparation and sequencing
89was performed by the Genome Sequencing and Analysis Facility (GSAF) at the
90University of Texas at Austin. For each of the three samples, two Illumina libraries
91were prepared and sequenced (technical replicates). Sequencing was performed on
92an Illumina HiSeq 2500 with the following specifications: high-throughput run
93mode, run type paired end 2 × 125 bp, 6 × 4.0E8 target reads (millions), insert size of
94∼360–420 bp and ∼5% PhiX control spike-in. This sequencing approach provided
95∼113 Gb of sequencing data (373,279,006, 289,782,708 and 246,243,202 reads from
96the HEX, NAP and PHE samples, respectively). Raw Illumina shotgun genomic
97reads were separated from Illumina artefacts by removing the adaptors and DNA
98spike-ins from the forward and reverse reads. Therefore, a sliding window approach
99using a kmer size of 28 and a step size of 1 was used. Q4Reads with ≥3 Ns, an average
100score of <Q20 and a read length of <50 bps were removed using cutadapt (yielding
101886,823,725 total reads)30. Afterwards, reads were interleaved using interleave_fasta.
102py and the interleaved sequences were trimmed using Sickle and a minimum quality
103cutoff of 5 (yielding 877,414,119 total reads)31. The script for interleave_fasta.py can
104be found at https://github.com/jorvis/biocode/blob/master/fasta/interleave_fasta.py.
105Metagenomic reads from all SIP samples were individually assembled using
106IDBA-UD and the following parameters: –pre_correction, -mink 75, -maxk 105,
107–step 10, –seed_kmer 55 (ref. 32). This yielded a total of 2,739,076 scaffolds from all
108three SIP enrichments. The minimum and maximum scaffold length ranged from
109200 to 130,027 bp.
110Metagenomic binning was performed on assembled SIP enrichments using
111tetranucleotide frequencies on scaffolds with a length ≥4,000 bp (including a total of
1124,874 scaffolds)33. The resulting emerging self-organizing maps (ESOMs) were
113manually sorted and curated (Supplementary Fig. 1)33. Metagenomic binning was
114enhanced by incorporating reference genomes as genetic signatures for the
115assembled contigs into ESOMs33,34. In this way we assembled 7 high-quality and 17
116fragmentary metagenomic bins (completeness threshold of 50%). The seven high-
117quality genomes showed a completeness ranging from 52–95%, included 1,492/4,874
118scaffolds with a scaffold length between 4,006 and 257,386 bp. The 17 fragmentary
119genomes displayed a completeness below 50% and comprised 2,737/4,874 scaffolds
120that ranged from 4,000 to 44,889 bp. Additionally, 645/4,874 scaffolds remained
121unbinned (4,002–77,080 bp length). After binning, draft genomes were linked to the
122SIP enrichments based on their unique scaffold ID. CheckM was used to evaluate the
123accuracy of the binning approach by determining the percentage of completeness
124and contamination (Supplementary Table 1)35. Contaminants that were identified
125based on their phylogenetic placement (wrong taxonomic assignment compared to
126the average taxonomic assignment of the genes assigned to each bin; see section on
127taxonomic assignment), GC content (>25% difference compared to the mean of all
128scaffolds assigned to each bin) or confidence level (below 0.5) were manually
129removed from the bins.

130Gene calling, taxonomic assignment and functional characterization. Gene
131calling and taxonomic assignment of the three SIP enrichments and seven
132high-quality draft genomes were performed using the Joint Genome
133Institute–Production Genomics Facility (JGI-PGF) Integrated Microbial Genomes
134with Microbiome (IMG/M) system. To achieve this, the complete assemblies
135from the three SIP enrichments were uploaded onto the JGI server. The retrieved JGI
136output was linked to the seven draft genomes using their unique scaffold IDs.
137The JGI output summarizing the taxonomic assignment of all gene annotations was
138used to depict the taxonomic composition as shown in Supplementary Fig. 2.
139The JGI-based amino-acid sequences were used as a database for blastp searches
140(as indicated in the text Q5).
141For the functional characterization of our draft genomes, a reference gene
142database was assembled by downloading SEED subsystems using the network-based
143SEED API (function svr_all_subsystems)36. The SEED-based reference database was
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1 manually curated to include only subsystems of interest by downloading the gene
2 functions and gene IDs of individual subsystems (functions svr_subsystem_roles
3 and svr_subsystem_spreadsheet), which were then used to retrieve their respective
4 fasta sequences (function svr_fasta). The SEED subsystems included are shown in
5 Fig. 2, and the numbers in parentheses include the total number of genes screened
6 per subsystem (Fig. 2 and Supplementary Data 2). Additionally, we manually
7 curated a reference database including only hydrocarbon degradation genes by
8 searching the KEGG and NCBI databases for hydrocarbon degradation pathways
9 and corresponding genes (Fig. 3). Both of these reference databases were screened
10 against annotated genes from the seven draft genomes using their JGI-derived
11 amino-acid sequences as input for blastp (e-value threshold of 1e-20)37.

12 Phylogenetic analyses. Phylosift was used to extract marker genes for the
13 phylogenetic placement of the assembled metagenomic bins38. These marker genes
14 consist of up to 15 syntenic ribosomal protein genes that have been demonstrated to
15 undergo limited lateral gene transfer (rpL2, 3, 4, 5, 6, 14, 15, 18, 22, 24 and rpS3, 8,
16 10, 17, 19)39. This gene set was derived from a reference database as detailed in
17 ref. 40. To search for ribosomal protein sequences, all metagenomic bins (fasta files)
18 were used as an input in Phylosift, which was used with default parameters.
19 Moreover, we searched NCBI to include amino-acid sequences from bacterial
20 reference strains for phylogenetic analyses. Amino-acid alignments of the individual
21 ribosomal protein genes were generated using MUSCLE and curated manually41.
22 Afterwards, the curated alignments of the ribosomal proteins were concatenated for
23 further phylogenetic analyses. In addition to analysing ribosomal proteins, we
24 employed EMIRGE to retrieve 16S rRNA genes from the three SIP enrichments42.
25 We therefore ran an EMIRGE analysis comparing the SILVA database against the
26 raw, short reads from the three SIP enrichments using default parameters. Retrieved
27 16S rRNA genes were aligned to the SILVA database using the ARB alignment tool
28 and were curated manually43. For both the ribosomal protein and 16S rRNA gene
29 alignments, phylogenetic trees were generated using a maximum likelihood-based
30 analysis (RAxML; rate distribution models: PROTGAMMA for ribosomal proteins
31 and GTRGAMMA for 16S rRNA gene sequences)44. Bootstrap values were
32 calculated using MrBayes with 100,000 generations of Markov chain Monte Carlo
33 (MCMC) analyses with 100 sample and print frequencies45. As a point of
34 comparison, we included published 16S rRNA gene sequences from the plume and
35 sea surface as well as from the previous SIP experiment (16S rRNA genes from clone
36 libraries and isolated bacterial strains) for the 16S rRNA phylogenetic tree2,3,10,13,46.

37 Meta analysis. To determine whether genes from the assembled metagenomic bins
38 in this study were enriched and active in the plume during the spill, we compared
39 our three SIP enrichments with previously published plume-derived metagenomic
40 and metatranscriptomic data sets (http://mason.eoas.fsu.edu/DWH_plume/)10. Two
41 reference databases were generated, which were compared against the published
42 metagenomic and metatranscriptomic data sets. Reference database 1 consisted of
43 DNA sequences comprising scaffolds of >2,500 bp that were derived from the three
44 SIP assemblies. Reference database 2 included amino-acid sequences from the seven
45 high-quality draft genomes. Reference database 1 (DNA sequences) was mapped
46 against the published metagenomic and metatranscriptomic data set using BWA.
47 Database 2 (amino-acid sequences) was used to search against the published
48 metatranscriptomic data using Rapsearch2 to retrieve the exact genes that mapped
49 against this data set47,48. For BWA the default parameters were used and an e-value
50 cutoff of 0.001 was used for RapSearch2.

51 Accession codes. The genomes are available in NCBI Genbank under BioProjectID
52 PRJNA301966. The whole genome shotgun projects have been deposited under
53 accession nos. LSMM00000000 (H-Mar), LSMN00000000 (N-Tha),
54 LSMO00000000 (N-Alc), LSMP00000000 (N-Alt), LSMQ00000000 (P-Cyc),
55 LSMR00000000 (P-Nep) and LSMS00000000 (P-Col). The reference numbers for
56 the original raw sequencing data are SRX1562986 (n-hexadecane), SRX1585241
57 (naphthalene) and SRX1586894 (phenanthrene).
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