31 research outputs found

    Competition between plant and bacterial cells at the microscale regulates the dynamics of nitrogen acquisition in wheat (Triticum aestivum)

    Get PDF
    The ability of plants to compete effectively for nitrogen (N) resources is critical to plant survival. However, controversy surrounds the importance of organic and inorganic sources of N in plant nutrition because of our poor ability to visualize and understand processes happening at the root�microbial�soil interface. Using high-resolution nano-scale secondary ion mass spectrometry stable isotope imaging (NanoSIMS-SII), we quantified the fate of 15N over both space and time within the rhizosphere. We pulse-labelled the soil surrounding wheat (Triticum aestivum) roots with either inline image or 15N-glutamate and traced the movement of 15N over 24 h. Imaging revealed that glutamate was rapidly depleted from the rhizosphere and that most 15N was captured by rhizobacteria, leading to very high 15N microbial enrichment. After microbial capture, approximately half of the 15N-glutamate was rapidly mineralized, leading to the excretion of inline image, which became available for plant capture. Roots proved to be poor competitors for 15N-glutamate and took up N mainly as inline image. Spatial mapping of 15N revealed differential patterns of 15N uptake within bacteria and the rapid uptake and redistribution of 15N within roots. In conclusion, we demonstrate the rapid cycling and transformation of N at the soil�root interface and that wheat capture of organic N is low in comparison to inorganic N under the conditions tested

    Dissecting the Re-Os molybdenite geochronometer

    Get PDF
    Rhenium and osmium isotopes have been used for decades to date the formation of molybdenite (MoS2), a common mineral in ore deposits and the world’s main source of molybdenum and rhenium. Understanding the distribution of parent 187Re and radiogenic daughter 187Os isotopes in molybdenite is critical in interpreting isotopic measurements because it can compromise the accurate determination and interpretation of mineralization ages. In order to resolve the controls on the distribution of these elements, chemical and isotope mapping of MoS2 grains from representative porphyry copper-molybdenum deposits were performed using electron microprobe and nano-scale secondary ion mass spectrometry. Our results show a heterogeneous distribution of 185,187Re and 192Os isotopes in MoS2, and that both 187Re and 187Os isotopes are not decoupled as previously thought. We conclude that Re and Os are structurally bound or present as nanoparticles in or next to molybdenite grains, recording a complex formation history and hindering the use of microbeam techniques for Re-Os molybdenite dating. Our study opens new avenues to explore the effects of isotope nuggeting in geochronometers

    Relationship between microstructures and grain-scale trace element distribution in komatiite-hosted magmatic sulphide ores

    Get PDF
    Komatiite-hosted nickel sulphides from the Yilgarn Craton (Australia) consist of two main sulphide phases: pyrrhotite (Fe7S8) and pentlandite ((Fe,Ni)9S8); two minor sulphide phases: chalcopyrite (CuFeS2) and pyrite (FeS2) and trace arsenides. Samples of massive sulphides from three deposits with diverse deformation and metamorphic histories (the Silver Swan, Perseverance and Flying Fox deposits) have been studied by electron backscatter diffraction and laser ablation inductively coupled plasma mass spectrometry and nano-scale secondary ion mass spectrometry. These ore bodies were selected to investigate the relationship between microstructures and mineral trace element chemistry in three dominant sulphide species in each deposit. In all three samples, pyrrhotite preserves a strong evidence of crystal plasticity relative to both pentlandite and pyrite. The trace element composition of pyrrhotite shows significant variation in specific elements (Pb, Bi and Ag). This variation correlates spatially with intragrain pyrrhotite microstructures, such as low angle and twin boundaries. Minor signatures of crystal plasticity in pyrite and pentlandite occur in the form of rare low angle boundaries (pentlandite) and mild lattice misorientation (pyrite). Trace element compositions of pentlandite and pyrite show no correlation with microstructures.Variations in pyrrhotite are interpreted as a result of intragrain diffusion during the syn- and post-deformation history of the deposit. Intragrain diffusion can occur either due to bulk diffusion, dislocation–impurity pair diffusion, or by “pipe diffusion”, i.e. along fast diffusion pathways at high and low angle, and twin boundaries. This contribution examines three different diffusion models and suggests that dislocation–impurity pair diffusion and pipe diffusion are the most likely processes behind increased trace element concentration along the microstructures in pyrrhotite. The same phenomenon is observed in samples from three different deposits that experienced widely different metamorphic conditions, implying that the final disposition of these elements reflects a post peak-metamorphic stage of the geological history of all three deposits

    Low birthweight, preschool education, and school remediation

    Get PDF
    Abstract Studies have documented a strong relationship between low birth weight status and adverse child outcomes such as poor school performance and need for special education services. Following a cohort of over 1,300 low-income and predominately African American children in the Chicago Longitudinal Study we investigated whether birth weight and family socio-economic risk measured at the time of the child’s birth predicts placement into special education classes or grade retention in elementary school. Contrary to previous research, we found that low birth weight (< 5 ½ pounds) does not predict special education placement. Rather, these children (especially boys) were more likely to be retained in grade as an alternative approach to addressing poor school performance. Family socio-economic risk at birth was a significant predictor of the need for remedial services. We also assessed whether a high-quality preschool program offered at ages 3 and 4 can reduce the negative effects of low family SES and birth weight on the need for special education and grade retention. Preschool participation in the Child-Parent Centers was found to reduce the likelihood of school remediation. The effects of preschool were greater for children from families with higher levels of socio-economic disadvantage. The beneficial effects of preschool on special education placement were also larger for boys than girls

    Nutrient cycling in early coral life stages:Pocillopora damicornislarvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates

    Get PDF
    The waters surrounding coral reef ecosystems are generally poor in nutrients, yet their levels of primary production are comparable with those reported from tropical rain forests. One explanation of this paradox is the efficient cycling of nutrients between the coral host, its endosymbiotic alga Symbiodinium and a wide array of microorganisms. Despite their importance for the animals' fitness, the cycling of nutrients in early coral life stages and the initial establishment of partnerships with the microbes involved in these processes has received little scrutiny to date. Nitrogen is an essential but limited nutrient in coral reef ecosystems. In order to assess the early nutrient exchange between bacteria and corals, coral larvae of the species Pocillopora damicornis were incubated with two coral-associated bacteria (Alteromonas sp., or Vibrio alginolyticus), prelabeled with the stable nitrogen isotope N-15. The incorporation and translocation of nitrogen from Vibrio- and Alteromonas bacteria into P. damicornis coral larvae and specifically into the coral-symbiotic Symbiodinium were detected by nanoscale secondary ion mass spectrometry (NanoSIMS). A significant increase in the amount of enriched N-15 (two to threefold compared to natural abundance) was observed in P. damicornis larvae within 8h of incubation for both bacterial treatments (one-way ANOVA, F-5,F-53=18.03, P=0.004 for Alteromonas sp. and F-5,F-53=18.03, P=0.0001 for V. alginolyticus). These findings reveal that coral larvae acquire nutrients previously taken up from the environment by bacteria. The additional nitrogen may increase the survival rate and fitness of the developing coral and therefore contribute to the successful maintenance of coral reefs

    Mud flow levitation on Mars: Insights from laboratory simulations

    No full text
    Sediment mobilisation occurring at depth and ultimately manifesting at the surface, is a process which may have operated on Mars. However, the propagation behaviour of this mixture of water and sediments (hereafter simply referred to as mud) over the martian surface, remains uncertain. Although most of the martian surface is below freezing today, locally warmer surface temperatures do occur, and our current knowledge suggests that similar conditions prevailed in the recent past. Here, we present the results of experiments performed inside a low pressure chamber to investigate mud propagation over a warm (∼295 K) unconsolidated sand surface under martian atmospheric pressure conditions (∼7 mbar). Results show that the mud boils while flowing over the warm surface. The gas released during this process can displace the underlying sand particles and hence erode part of the substrate. This “entrenched” flow can act as a platform for further mud propagation over the surface. The escaping gas causes intermittent levitation of the mud resulting in enhanced flow rates. The mud flow morphologies produced by these phenomena differ from those produced when mud flows over a frozen martian surface as well as from their terrestrial counterparts. The intense boiling removes the latent heat both from the mud and the subsurface, meaning that the mud flow would eventually start to freeze and hence changing again the way it propagates. The diverse morphology expressed by our experimental mudflows implies that caution should be exercised when interpreting flow features on the surface of Mars and other celestial bodies

    Scanning Ion Probe Studies of Silicon Implantation Profiles in AlGaN/GaN HEMT Heterostructures

    No full text
    This paper reports results of scanning ion probe studies fo silicon implantation profiles in source and drain regions of AlGaN/GaN high-electron-mobility transistor (HEMT) heterostructures. It is shown that both the undoped channel length and the transition region between implanted and non-implanted regions become wider with increasing depth in the structure. These results may explain the previously reported existence of resistance associated with the transition region between implanted and non-implanted semiconductor regions in AlGaN/GaN HEMT heterostructures with non-alloyed Si-implanted source and drain ohmic contact regions
    corecore