300 research outputs found

    Cocatalyst Binding Effects in Organocatalytic Ring-Opening Polymerization of L-Lactide

    Get PDF
    Thiourea/alkylamine cocatalysts have previously been shown to be effective systems for the ring-opening polymerization (ROP) of lactide, but an experimental explanation for the varied activity and selectivity of these structurally similar alkylamine cocatalysts combined with thiourea is elusive. In this work, several alkylamine bases are shown to be weakly associated with a thiourea cocatalyst in solution, and the nature of cocatalyst interactions vary with the identity of the alkylamine. Kinetic analyses of the organocatalytic ROP reactions reveal noninhibitory behavior in [alkylamine] and a new mode of activity for thiourea. Reactivity patterns are proposed based on computed cocatalyst geometries, and a new cocatalyst pair for the ROP of lactide is disclosed

    Further vehicle exhaust emission controls and their impact on NO2 air quality in Europe

    Get PDF
    About 8% of the urban population in the European Union (EU28) is exposed to ambient NO2 concentrations in excess of the annual air quality limit value of 40 μg/m3 (Guerreiro et al. 2014, 56f.). In addition, eleven Member States have not met their 2010 NOx emissions cap under the EU Directive on Emission Ceilings, and six countries continue failing still in 2013 (EEA 2015b). High on-road NOx emissions notably from diesel cars are made responsible for the persistent exceedance of the NO2 air quality limit value, in particular along urban roads (EEA 2015a). NOx emissions from all sectors are expected to decrease by more than 40% between 2015 and 2030 if legislation is implemented as planned in EU28. NOx emissions from diesel heavy duty and light duty vehicles are expected to decline by 80% and 60%, respectively, in the same period (Markus Amann et al. 2014). In consequence, exceedances of the NO2 ambient limit values are expected to decrease. However, there is particular uncertainty about the on-road emissions from future light duty diesel vehicles. Therefore, how many stations will still remain in excess of the ambient air quality limit value does crucially depend on the real-world NOx emissions of Euro 6 light duty diesel vehicles (Borken-Kleefeld and Ntziachristos 2012) (Fig. 1). In case of high on-road NOx emissions from Euro 6 diesel cars and light commercial vehicles there might be a need for further emission controls. This study explores how much an additional hypothetical emission control stage (called Euro 7/VII) for light- and heavy-duty diesel vehicles could help to reduce further or quicker the NO2 ambient concentrations

    Designed Guanidinium-Rich Amphipathic Oligocarbonate Molecular Transporters Complex, Deliver and Release siRNA in Cells

    Get PDF
    The polyanionic nature of oligonucleotides and their enzymatic degradation present challenges for the use of siRNA in research and therapy; among the most notable of these is clinically relevant delivery into cells. To address this problem, we designed and synthesized the first members of a new class of guanidinium-rich amphipathic oligocarbonates that noncovalently complex, deliver, and release siRNA in cells, resulting in robust knockdown of target protein synthesis in vitro as determined using a dual-reporter system. The organocatalytic oligomerization used to synthesize these co-oligomers is step-economical and broadly tunable, affording an exceptionally quick strategy to explore chemical space for optimal siRNA delivery in varied applications. The speed and versatility of this approach and the biodegradability of the designed agents make this an attractive strategy for biological tool development, imaging, diagnostics, and therapeutic applications

    Quantifying national household air pollution (HAP) exposure to PM2.5 in rural and urban areas

    Get PDF
    According to WHO (World Health Organization), in 2020, 14% of people in global urban areas relied on polluting solid fuels and technologies, compared with 52% of the rural population. The health impacts of such inequality are massive. It was estimated that 3.2 million premature deaths per year (2020), particularly in low-income and middle-income countries due to household air pollution (HAP). Several studies provide estimates of the exposure to fine particulate matter (PM2.5) from household air pollution (HAP-PM2.5) for users of different fuel/cookstove types in rural and urban areas. However, hardly any studies estimate the population-weighted exposure to HAP-PM2.5 at the global scale. A Bayesian hierarchical model was developed to estimate PM2.5 exposure coefficients and their uncertainties for an annual average of HAP-PM2.5 personal exposure. The predicted HAP-PM2.5 exposure at the user level was used to estimate the national-level exposure for the population living in urban and rural areas. The results suggest that switching from polluting solid fuels (biomass, charcoal, coal) to cleaner fuels (gas and electricity) for heating and cooking can potentially reduce the national-level HAP-PM2.5 personal exposure on average by 53%. However, there exists a significant disparity between rural and urban areas, partly reflecting inequality in energy access. More specifically, switching from polluting solid fuels for heating and cooking to cleaner fuels can reduce the personal exposure to HAP-PM2.5 in rural areas by 54% and in urban areas by 38%. The study indicates that increased access to clean fuels and improved stove interventions are needed to achieve the goals of universal energy access and equality between urban and rural areas

    The CUSSH programme: supporting cities’ transformational change towards health and sustainability [version 2; peer review: 2 approved]

    Get PDF
    This paper describes a global research programme on the complex systemic connections between urban development and health. Through transdisciplinary methods the Complex Urban Systems for Sustainability and Health (CUSSH) project will develop critical evidence on how to achieve the far-reaching transformation of cities needed to address vital environmental imperatives for planetary health in the 21st Century. CUSSH’s core components include: (i) a review of evidence on the effects of climate actions (both mitigation and adaptation) and factors influencing their implementation in urban settings; (ii) the development and application of methods for tracking the progress of cities towards sustainability and health goals; (iii) the development and application of models to assess the impact on population health, health inequalities, socio-economic development and environmental parameters of urban development strategies, in order to support policy decisions; (iv) iterative in-depth engagements with stakeholders in partner cities in low-, middle- and high-income settings, using systems-based participatory methods, to test and support the implementation of the transformative changes needed to meet local and global health and sustainability objectives; (v) a programme of public engagement and capacity building. Through these steps, the programme will provide transferable evidence on how to accelerate actions essential to achieving population-level health and global climate goals through, amongst others, changing cities’ energy provision, transport infrastructure, green infrastructure, air quality, waste management and housing

    Urban–rural disparity in global estimation of PM2·5 household air pollution and its attributable health burden

    Get PDF
    Background: Polluting fuels and inefficient stove technologies are still a leading cause of premature deaths worldwide, particularly in low-income and middle-income countries. Previous studies of global household air pollution (HAP) have neither considered the estimation of PM2·5 at national level nor the corresponding attributable mortality burden. Additionally, the effects of climate and ambient air pollution on the global estimation of HAP-PM2·5 exposure for different urban and rural settings remain largely unknown. In this study, we include climatic effects to estimate the HAP-PM2·5 exposure from different fuel types and stove technologies in rural and urban settings separately and the related attributable global mortality burden. Methods: Bayesian hierarchical models were developed to estimate an annual average HAP-PM2·5 personal exposure and HAP-PM2·5 indoor concentration (including both outdoor and indoor sources). Model variables were selected from sample data in 282 peer-reviewed studies drawn and updated from the WHO Global HAP dataset. The PM2·5 exposure coefficients from the developed model were applied to the external datasets to predict the HAP-PM2·5 exposure globally (personal exposure in 62 countries and indoor concentration in 69 countries). Attributable mortality rate was estimated using a comparative risk assessment approach. Using weighted averages, the national level 24 h average HAP-PM2·5 exposure due to polluting and clean fuels and related death rate per 100 000 population were estimated. Findings: In 2020, household use of polluting solid fuels for cooking and heating led to a national-level average personal exposure of 151 μg/m3 (95% CI 133-169), with rural households having an average of 171 μg/m3 (153-189) and urban households an average of 92 μg/m3 (77-106). Use of clean fuels gave rise to a national-level average personal exposure of 69 μg/m3 (62-76), with a rural average of 76 μg/m3 (69-83) and an urban average of 49 μg/m3 (46-53). Personal exposure-attributable premature mortality (per 100 000 population) from the use of polluting solid fuels at national level was on average 78 (95% CI 69-87), with a rural average of 82 (73-90) and an urban average of 66 (57-75). The average attributable premature mortality (per 100 000 population) from the use of clean fuels at the national level is 62 (54-70), with a rural average of 66 (58-74) and an urban average of 52 (47-57). The estimated HAP-PM2·5 indoor concentration shows that the use of polluting solid fuels resulted in a national-level average of 412 μg/m3 (95% CI 353-471), with a rural average of 514 μg/m3 (446-582) and an urban average of 149 μg/m3 (126-173). The use of clean fuels (gas and electricity) led to an average PM2·5 indoor concentration of 135 μg/m3 (117-153), with a rural average of 174 μg/m3 (154-195) and an urban average of 71 μg/m3 (63-80). Using time-weighted HAP-PM2·5 indoor concentrations, the attributable premature death rate (per 100 000 population) from the use of polluting solid fuels at the national level is on average 78 (95% CI 72-84), the rural average being 84 (78-91) and the urban average 60 (54-66). From the use of clean fuels, the average attributable premature death rate (per 100 000 population) at the national level is 59 (53-64), the rural average being 68 (62-74) and the urban average 45 (41-50). Interpretation: A shift from polluting to clean fuels can reduce the average PM2·5 personal exposure by 53% and thereby lower the death rate. For all fuel types, the estimated average HAP-PM2·5 personal exposure and indoor concentrations exceed the WHO's Interim Target-1 average annual threshold. Policy interventions are urgently needed to greatly increase the use of clean fuels and stove technologies by 2030 to achieve the goal of affordable clean energy access, as set by the UN in 2015, and address health inequities in urban-rural settings. Funding: Wellcome Trust, The Lancet Countdown, the Eng
    • …
    corecore