1,931 research outputs found

    Nonclassicality filters and quasiprobabilities

    Full text link
    Necessary and sufficient conditions for the nonclassicality of bosonic quantum states are formulated by introducing nonclassicality filters and nonclassicality quasiprobability distributions. Regular quasiprobabilities are constructed from characteristic functions which can be directly sampled by balanced homodyne detection. Their negativities uncover the nonclassical effects of general quantum states. The method is illustrated by visualizing the nonclassical nature of a squeezed state.Comment: Significantly revised version, more emphasis on practical applicatio

    Cooling Performance of White Roofs in Residential Buildings

    Get PDF
    A multitude of research efforts explore the possibilities for reducing buildings' energy demand. In general, the cooling load of buildings is affected in part by the solar absorptance of roof surfaces. Therefore, new energy-efficient products with higher reflectance for the building envelope can be favorable in view of energy saving potential. In this context, this paper explores the potential for reducing building’s cooling energy demand via application of high solar reflectivity layers applied to the roof surface. For this purpose, three different prefabricated residential buildings in Novi Sad, Serbia, were selected and made subject to systematic thermal performance simulations. The computed performance indicators were then used to investigate cooling demand and overheating tendencies during summer months. The results show a significant reduction in computed cooling loads (from 4% to 37%, depending on the envisioned scenario), thus pointing to the thermal benefits of the cool roof system

    Quantum teleportation and entanglement swapping with linear optics logic gates

    Full text link
    We report on the usage of a linear optics phase gate for distinguishing all four Bell states simultaneously in a quantum teleportation and entanglement swapping protocol. This is demonstrated by full state tomography of the one and two qubit output states of the two protocols, yielding average state fidelities of about 0.83 and 0.77, respectively. In addition, the performance of the teleportation channel is characterised by quantum process tomography. The non classical properties of the entanglement swapping output states are further confirmed by the violation of a CHSH-type Bell inequality of 2.14 on average.Comment: 11 pages, 3 figure

    Experimental measurement-based quantum computing beyond the cluster-state model

    Full text link
    The paradigm of measurement-based quantum computation opens new experimental avenues to realize a quantum computer and deepens our understanding of quantum physics. Measurement-based quantum computation starts from a highly entangled universal resource state. For years, clusters states have been the only known universal resources. Surprisingly, a novel framework namely quantum computation in correlation space has opened new routes to implement measurement-based quantum computation based on quantum states possessing entanglement properties different from cluster states. Here we report an experimental demonstration of every building block of such a model. With a four-qubit and a six-qubit state as distinct from cluster states, we have realized a universal set of single-qubit rotations, two-qubit entangling gates and further Deutsch's algorithm. Besides being of fundamental interest, our experiment proves in-principle the feasibility of universal measurement-based quantum computation without using cluster states, which represents a new approach towards the realization of a quantum computer.Comment: 26 pages, final version, comments welcom

    Direct generation of photon triplets using cascaded photon-pair sources

    Full text link
    Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. We expect our photon-triplet source to open up new avenues of quantum optics and become an important tool in quantum technologies. Our source will allow experimental interrogation of novel quantum correlations, the post-selection free generation of tripartite entanglement without post- selection and the generation of heralded entangled-photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, ideally suited for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur

    microRNA miR-142-3p Inhibits Breast Cancer Cell Invasiveness by Synchronous Targeting of WASL, Integrin Alpha V, and Additional Cytoskeletal Elements

    Full text link
    MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3’-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer
    corecore