656 research outputs found

    Potential Impacts of Energy Development on Shrublands in Western North America

    Get PDF
    Impending rapid development of the abundant energy resources found in western North America may have dramatic consequences for its terrestrial ecosystems. We used lease and license data to provide an approximate estimate of direct and indirect potential impacts from renewable and non-renewable energy development on each of five major terrestrial ecosystems and completed more detailed analyses for shrubland ecosystems. We found that energy development could impact up to 21 percent (96 million ha) of the five major ecosystems in western North America. The highest overall predicted impacts as a percent of the ecosystem type are to boreal forest (23-32 percent), shrublands (6-24 percent), and grasslands (9-21 percent). In absolute terms, the largest potential impacts are to shrublands (9.9 to 41.1 million ha). Oil, gas, wind, solar, and geothermal development each have their greatest potential impacts on shrublands. The impacts to shrublands occur in all ecological regions across western North America, but potential impacts are greatest in the North American Deserts (up to 27 percent or 25.8 million ha), Great Plains (up to 24 percent or 8.9 million ha), and Northern Forests (up to 47 percent or 4.3 million ha). Conventional oil and gas development accounts for the largest proportion of the potential impact in all three of these regions. Some states or provinces may experience particularly large impacts to shrublands, including Alberta and Wyoming, where potential for oil and gas development is especially high, and New Mexico, where solar development could potentially affect large areas of shrubland. Understanding the scale of anticipated impacts to these ecosystems through this type of coarse-scale analysis may help to catalyze policy makers to engage in proactive planning

    Development by Design: Mitigating Wind Development's Impacts on Wildlife in Kansas

    Get PDF
    Wind energy, if improperly sited, can impact wildlife through direct mortality and habitat loss and fragmentation, in contrast to its environmental benefits in the areas of greenhouse gas, air quality, and water quality. Fortunately, risks to wildlife from wind energy may be alleviated through proper siting and mitigation offsets. Here we identify areas in Kansas where wind development is incompatible with conservation, areas where wind development may proceed but with compensatory mitigation for impacts, and areas where development could proceed without the need for compensatory mitigation. We demonstrate that approximately 10.3 million ha in Kansas (48 percent of the state) has the potential to provide 478 GW of installed capacity while still meeting conservation goals. Of this total, approximately 2.7 million ha would require no compensatory mitigation and could produce up to 125 GW of installed capacity. This is 1,648 percent higher than the level of wind development needed in Kansas by 2030 if the United States is to get 20 percent of its electricity from wind. Projects that avoid and offset impacts consistent with this analysis could be awarded “Green Certification.” Certification may help to expand and sustain the wind industry by facilitating the completion of individual projects sited to avoid sensitive areas and protecting the industry's reputation as an ecologically friendly source of electricity

    Error in statistical tests of error in statistical tests

    Get PDF
    BACKGROUND: A recent paper found that terminal digits of statistical values in Nature deviated significantly from an equiprobable distribution, indicating errors or inconsistencies in rounding. This finding, as well as the discovery that a large percentage of p values were inconsistent with reported test statistics, led to a great deal of concern in the popular press and scientific community. The findings ultimately led to new guidelines for all Nature Research Journals. METHODS: We checked the statistical analysis behind the original paper's tests of equiprobability. RESULTS: The original paper tested equiprobability with the Kolmogorov-Smirnov test outside its regime of validity. Correct tests find no statistically significant deviations from equiprobability for the statistical values in Nature. CONCLUSION: Statistical tests should be used correctly

    Effects of Ultraviolet Radiation on Amphibians: Field Experiments

    Get PDF
    Numerous reports suggest that populations of amphibians from a wide variety of locations are experiencing population declines and/or range reductions. In some cases, unusually high egg mortality has been reported. Field experiments have been used with increasing frequency to investigate ultraviolet radiation as one of the potential factors contributing to these declines. Results from field experiments illustrate that hatching success of eggs is hampered by ultraviolet radiation in a number of species, while other species appear to be unaffected. Continued mortality in early life-history stages may ultimately contribute to a population decline. Although UV-B radiation may not contribute to the population declines of all species, it may play a role in the population decline of some species, especially those that lay eggs in open shallow water subjected to solar radiation and in those that have a poor ability to repair UV-induced DNA damage.Peer reviewe

    Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development

    Get PDF
    Wind energy offers the potential to reduce carbon emissions while increasing energy independence and bolstering economic development. However, wind energy has a larger land footprint per Gigawatt (GW) than most other forms of energy production, making appropriate siting and mitigation particularly important. Species that require large unfragmented habitats and those known to avoid vertical structures are particularly at risk from wind development. Developing energy on disturbed lands rather than placing new developments within large and intact habitats would reduce cumulative impacts to wildlife. The U.S. Department of Energy estimates that it will take 241 GW of terrestrial based wind development on approximately 5 million hectares to reach 20% electricity production for the U.S. by 2030. We estimate there are ∼7,700 GW of potential wind energy available across the U.S., with ∼3,500 GW on disturbed lands. In addition, a disturbance-focused development strategy would avert the development of ∼2.3 million hectares of undisturbed lands while generating the same amount of energy as development based solely on maximizing wind potential. Wind subsidies targeted at favoring low-impact developments and creating avoidance and mitigation requirements that raise the costs for projects impacting sensitive lands could improve public value for both wind energy and biodiversity conservation

    Atmospheric Consequences of Cosmic Ray Variability in the Extragalactic Shock Model II: Revised ionization levels and their consequences

    Full text link
    It has been suggested that galactic shock asymmetry induced by our galaxy's infall toward the Virgo Cluster may be a source of periodicity in cosmic ray exposure as the solar system oscillates perpendicular to the galactic plane. Here we investigate a mechanism by which cosmic rays might affect terrestrial biodiversity, ionization and dissociation in the atmosphere, resulting in depletion of ozone and a resulting increase in the dangerous solar UVB flux on the ground, with an improved ionization background computation averaged over a massive ensemble (about 7 x 10^5) shower simulations. We study minimal and full exposure to the postulated extragalactic background. The atmospheric effects are greater than with our earlier, simplified ionization model. At the lower end of the range effects are too small to be of serious consequence. At the upper end of the range, ~6 % global average loss of ozone column density exceeds that currently experienced due to effects such as accumulated chlorofluorocarbons. The intensity is less than a nearby supernova or galactic gamma-ray burst, but the duration would be about 10^6 times longer. Present UVB enhancement from current ozone depletion ~3% is a documented stress on the biosphere, but a depletion of the magnitude found at the upper end of our range would double the global average UVB flux. For estimates at the upper end of the range of the cosmic ray variability over geologic time, the mechanism of atmospheric ozone depletion may provide a major biological stress, which could easily bring about major loss of biodiversity. Future high energy astrophysical observations will resolve the question of whether such depletion is likely.Comment: 22 pages, 5 figures, to be published in Journal of Geophysical Research--Planets. This is an update and replacement for our 2008 paper, with a much more extensive simulation of air shower ionization. Ionization effects and ozone depletion are somewhat large

    Policy development for environmental licensing and biodiversity offsets in Latin America

    Get PDF
    Attempts to meet biodiversity goals through application of the mitigation hierarchy have gained wide traction globally with increased development of public policy, lending standards, and corporate practices. With interest in biodiversity offsets increasing in Latin America, we seek to strengthen the basis for policy development through a review of major environmental licensing policy frameworks in Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. Here we focused our review on an examination of national level policies to evaluate to which degree current provisions promote positive environmental outcomes. All the surveyed countries have national-level Environmental Impact Assessment laws or regulations that cover the habitats present in their territories. Although most countries enable the use of offsets only Brazil, Colombia, Mexico and Peru explicitly require their implementation. Our review has shown that while advancing quite detailed offset policies, most countries do not seem to have strong requirements regarding impact avoidance. Despite this deficiency most countries have a strong foundation from which to develop policy for biodiversity offsets, but several issues require further guidance, including how best to: (1) ensure conformance with the mitigation hierarchy; (2) identify the most environmentally preferable offsets within a landscape context; (3) determine appropriate mitigation replacement ratios; and (4) ensure appropriate time and effort is given to monitor offset performance
    corecore