76 research outputs found

    Measuring similarities between transcription factor binding sites

    Get PDF
    BACKGROUND: Collections of transcription factor binding profiles (Transfac, Jaspar) are essential to identify regulatory elements in DNA sequences. Subsets of highly similar profiles complicate large scale analysis of transcription factor binding sites. RESULTS: We propose to identify and group similar profiles using two independent similarity measures: χ(2 )distances between position frequency matrices (PFMs) and correlation coefficients between position weight matrices (PWMs) scores. CONCLUSION: We show that these measures complement each other and allow to associate Jaspar and Transfac matrices. Clusters of highly similar matrices are identified and can be used to optimise the search for regulatory elements. Moreover, the application of the measures is illustrated by assigning E-box matrices of a SELEX experiment and of experimentally characterised binding sites of circadian clock genes to the Myc-Max cluster

    Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression.</p> <p>Results</p> <p>We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes.</p> <p>Conclusion</p> <p>Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues.</p

    HuSiDa—the human siRNA database: an open-access database for published functional siRNA sequences and technical details of efficient transfer into recipient cells

    Get PDF
    Small interfering RNAs (siRNAs) have become a standard tool in functional genomics. Once incorporated into the RNA-induced silencing complex (RISC), siRNAs mediate the specific recognition of corresponding target mRNAs and their cleavage. However, only a small fraction of randomly chosen siRNA sequences is able to induce efficient gene silencing. In common laboratory practice, successful RNA interference experiments typically require both, the labour and cost-intensive identification of an active siRNA sequence and the optimization of target cell line-specific procedures for optimal siRNA delivery. To optimize the design and performance of siRNA experiments, we have established the human siRNA database (HuSiDa). The database provides sequences of published functional siRNA molecules targeting human genes and important technical details of the corresponding gene silencing experiments, including the mode of siRNA generation, recipient cell lines, transfection reagents and procedures and direct links to published references (PubMed). The database can be accessed at http://www.human-siRNA-database.net. We used the siRNA sequence information stored in the database for scrutinizing published sequence selection parameters for efficient gene silencing

    Prostate-specific membrane antigen (PSMA) as a potential target for molecular imaging and treatment in bone and soft tissue sarcomas

    Get PDF
    Bone and soft tissue sarcomas are a group of rare malignant tumours with major histological and anatomical varie-ties. In a metastatic setting, sarcomas have a poor prognosis due to limited response rates to chemotherapy. Radioli-gand therapy targeting prostate-specific membrane antigen (PSMA) may offer a new perspective. PSMA is a type II transmembrane glycoprotein which is present in all prostatic tissue and overexpressed in prostate cancer. Despite the name, PSMA is not prostate-specific. PSMA expression is also found in a multitude of non-prostatic diseases including a subgroup of sarcomas, mostly in its neovascular endothelial cells. On PET/CT imaging, multiple sarcomas have also shown intense PSMA-tracer accumulation. PSMA expression and PSMA-tracer uptake seem to be highest in patients with aggressive and advanced sarcomas, who are also in highest need of new therapeutic options. Although these results provide a good rationale for the future use of PSMA-targeted radioligand therapy in a selection of sarcoma patients, more research is needed to gain insight into optimal patient selection methods, PSMA-targeting antibodies and tracers, administered doses of radioligand therapy, and their efficacy and tolerability. In this review, mRNA expression of the FOLH1 gene which encodes PSMA, PSMA immunohistochemistry, PSMA-targeted imaging and PSMA-targeted therapy in sarcomas will be discussed.</p

    Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge

    Get PDF
    Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.</p

    Occupational exposure to gases/fumes and mineral dust affect DNA methylation levels of genes regulating expression

    Get PDF
    Many workers are daily exposed to occupational agents like gases/fumes, mineral dust or biological dust, which could induce adverse health effects. Epigenetic mechanisms, such as DNA methylation, have been suggested to play a role. We therefore aimed to identify differentially methylated regions (DMRs) upon occupational exposures in never-smokers and investigated if these DMRs associated with gene expression levels. To determine the effects of occupational exposures independent of smoking, 903 never-smokers of the LifeLines cohort study were included. We performed three genome-wide methylation analyses (Illumina 450 K), one per occupational exposure being gases/fumes, mineral dust and biological dust, using robust linear regression adjusted for appropriate confounders. DMRs were identified using comb-p in Python. Results were validated in the Rotterdam Study (233 never-smokers) and methylation-expression associations were assessed using Biobank-based Integrative Omics Study data (n = 2802). Of the total 21 significant DMRs, 14 DMRs were associated with gases/fumes and 7 with mineral dust. Three of these DMRs were associated with both exposures (RPLP1 and LINC02169 (2x)) and 11 DMRs were located within transcript start sites of gene expression regulating genes. We replicated two DMRs with gases/fumes (VTRNA2-1 and GNAS) and one with mineral dust (CCDC144NL). In addition, nine gases/fumes DMRs and six mineral dust DMRs significantly associated with gene expression levels. Our data suggest that occupational exposures may induce differential methylation of gene expression regulating genes and thereby may induce adverse health effects. Given the millions of workers that are exposed daily to occupational exposures, further studies on this epigenetic mechanism and health outcomes are warranted

    New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    Get PDF
    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways

    Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Get PDF
    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.No sponso

    Comprehensive diagnostics of acute myeloid leukemia by whole transcriptome RNA sequencing

    Get PDF
    Acute myeloid leukemia (AML) is caused by genetic aberrations that also govern the prognosis of patients and guide risk-adapted and targeted therapy. Genetic aberrations in AML are structurally diverse and currently detected by different diagnostic assays. This study sought to establish whole transcriptome RNA sequencing as single, comprehensive, and flexible platform for AML diagnostics. We developed HAMLET (Human AML Expedited Transcriptomics) as bioinformatics pipeline for simultaneous detection of fusion genes, small variants, tandem duplications, and gene expression with all information assembled in an annotated, user-friendly output file. Whole transcriptome RNA sequencing was performed on 100 AML cases and HAMLET results were validated by reference assays and targeted resequencing. The data showed that HAMLET accurately detected all fusion genes and overexpression of EVI1 irrespective of 3q26 aberrations. In addition, small variants in 13 genes that are often mutated in AML were called with 99.2% sensitivity and 100% specificity, and tandem duplications in FLT3 and KMT2A were detected by a novel algorithm based on soft-clipped reads with 100% sensitivity and 97.1% specificity. In conclusion, HAMLET has the potential to provide accurate comprehensive diagnostic information relevant for AML classification, risk assessment and targeted therapy on a single technology platform
    corecore