175 research outputs found

    Optical polarisation variability of radio loud narrow line Seyfert 1 galaxies. Search for long rotations of the polarisation plane

    Get PDF
    Narrow line Seyfert 1 galaxies (NLSy1s) constitute the AGN subclass associated with systematically smaller black hole masses. A few radio loud ones have been detected in MeV -- GeV energy bands by Fermi and evidence for the presence of blazar-like jets has been accumulated. In this study we wish to quantify the temporal behaviour of the optical polarisation, fraction and angle, for a selected sample of radio loud NLSy1s. We also search for rotations of the polarisation plane similar to those commonly observed in blazars. We have conducted R-band optical polarisation monitoring of a sample of 10 RL NLSy1s 5 of which have been previously detected by Fermi. The dataset includes observations with the RoboPol, KANATA, Perkins and Steward polarimeters. In the cases where evidences for long rotations of the polarisation plane are found, we carry out numerical simulations to assess the probability that they are caused by intrinsically evolving EVPAs instead of observational noise. Even our moderately sampled sources show indications of variability, both in polarisation fraction and angle. For the four best sampled objects in our sample we find multiple periods of significant polarisation angle variability. In the two best sampled cases, namely J1505+0326 and J0324+3410, we find indications for three long rotations. We show that although noise can induce the observed behaviour, it is much more likely that the apparent rotation is caused by intrinsic evolution of the EVPA. To our knowledge this is the very first detection of such events in this class of sources. In the case of the largest dataset (J0324+3410) we find that the EVPA concentrates around a direction which is at 49.3\degr to the 15-GHz radio jet implying a projected magnetic field at an angle of 40.7\degr to that axis.Comment: Accepted for publication in section 2. Astrophysical processes of Astronomy and Astrophysic

    Polarization angle swings in blazars: the case of 3C 279

    Get PDF
    Kiehlmann, S. et. al.Context. Over the past few years, on several occasions, large, continuous rotations of the electric vector position angle (EVPA) of linearly polarized optical emission from blazars have been reported. These events are often coincident with high energy gamma-ray flares and they have attracted considerable attention, since they could allow us to probe the magnetic field structure in the gamma-ray emitting region of the jet. The flat-spectrum radio quasar 3C 279 is one of the most prominent examples showing this behaviour. Aims. Our goal is to study the observed EVPA rotations and to distinguish between a stochastic and a deterministic origin of the polarization variability. Methods. We have combined multiple data sets of R-band photometry and optical polarimetry measurements of 3C 279, yielding exceptionally well-sampled flux density and polarization curves that cover a period of 2008-2012. Several large EVPA rotations are identified in the data. We introduce a quantitative measure for the EVPA curve smoothness, which is then used to test a set of simple random walk polarization variability models against the data. Results. 3C 279 shows different polarization variation characteristics during an optical low-flux state and a flaring state. The polarization variation during the flaring state, especially the smooth similar to 360 degrees rotation of the EVPA in mid-2011, is not consistent with the tested stochastic processes. Conclusions. We conclude that, during the two different optical flux states, two different processes govern polarization variation, which is possibly a stochastic process during the low-brightness state and a deterministic process during the flaring activity.S.K. was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Max Planck Institute for Radio Astronomy in cooperation with the Universities of Bonn and Cologne. T.S. was partly supported by the Academy of Finland project 274477. The research at Boston University was partly funded by NASA Fermi GI grant NNX11AQ03G. K.V.S. is partly supported by the Russian Foundation for Basic Research grants 13-02-12103 and 14-02-31789. N.G.B. was supported by the RFBR grant 12-02-01237a. E.B., M.S. and D.H. thank financial support from UNAM DGAPA-PAPIIT through grant IN116211-3. I. A. acknowledges support by a Ramon y Cajal grant of the Spanish Ministry of Economy and Competitiveness (MINECO). The research at the IAA-CSIC and the MAPCAT program are supported by the Spanish Ministry of Economy and Competitiveness and the Regional Government of Andalucia (Spain) through grants AYA2010-14844, AYA2013-40825-P, and P09-FQM-4784. The Calar Alto Observatory is jointly operated by the Max-Planck-Institut fur Astronomie and the Instituto de Astrofisica de Andalucia-CSIC. Data from the Steward Observatory spectropolarimetric monitoring project were used. This program is supported by Fermi Guest Investigator grants NNX08AW56G, NNX09AU10G, NNX12AO93G, and NNX14AQ58G. St. Petersburg University team acknowledges support from Russian RFBR grant 15-02-00949 and St. Petersburg University research grant 6.38.335.2015. The Abastumani team acknowledges financial support of the project FR/638/6-320/12 by the Shota Rustaveli National Science Foundation under contract 31/77.Peer reviewe

    Search for AGN counterparts of unidentified Fermi-LAT sources with optical polarimetry: Demonstration of the technique

    Get PDF
    The third Fermi-LAT catalog (3FGL) presented the data of the first four years of observations from the Fermi Gamma-ray Space Telescope mission. There are 3034 sources, 1010 of which still remain unidentified. Identifying and classifying gamma-ray emitters is of high significance with regard to studying high-energy astrophysics. We demonstrate that optical polarimetry can be an advantageous and practical tool in the hunt for counterparts of the unidentified gamma-ray sources (UGSs). Using data from the RoboPol project, we validated that a significant fraction of active galactic nuclei (AGN) associated with 3FGL sources can be identified due to their high optical polarization exceeding that of the field stars. We performed an optical polarimetric survey within 3σ3\sigma uncertainties of four unidentified 3FGL sources. We discovered a previously unknown extragalactic object within the positional uncertainty of 3FGL J0221.2+2518. We obtained its spectrum and measured a redshift of z=0.0609±0.0004z=0.0609\pm0.0004. Using these measurements and archival data we demonstrate that this source is a candidate counterpart for 3FGL J0221.2+2518 and most probably is a composite object: a star-forming galaxy accompanied by AGN. We conclude that polarimetry can be a powerful asset in the search for AGN candidate counterparts for unidentified Fermi sources. Future extensive polarimetric surveys at high galactic latitudes (e.g., PASIPHAE) will allow the association of a significant fraction of currently unidentified gamma-ray sources.Comment: accepted to A&

    RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars

    Get PDF
    We use results of our 3 year polarimetric monitoring program to investigate the previously suggested connection between rotations of the polarization plane in the optical emission of blazars and their gamma-ray flares in the GeV band. The homogeneous set of 40 rotation events in 24 sources detected by {\em RoboPol} is analysed together with the gamma-ray data provided by {\em Fermi}-LAT. We confirm that polarization plane rotations are indeed related to the closest gamma-ray flares in blazars and the time lags between these events are consistent with zero. Amplitudes of the rotations are anticorrelated with amplitudes of the gamma-ray flares. This is presumably caused by higher relativistic boosting (higher Doppler factors) in blazars that exhibit smaller amplitude polarization plane rotations. Moreover, the time scales of rotations and flares are marginally correlated.Comment: 12 pages, 16 figures, accepted to MNRA

    The hunt for extraterrestrial high-energy neutrino counterparts

    Full text link
    The origin of Petaelectronvolt (PeV) astrophysical neutrinos is fundamental to our understanding of the high-energy Universe. Apart from the technical challenges of operating detectors deep below ice, oceans, and lakes, the phenomenological challenges are even greater than those of gravitational waves; the sources are unknown, hard to predict, and we lack clear signatures. Neutrino astronomy therefore represents the greatest challenge faced by the astronomy and physics communities thus far. The possible neutrino sources range from accretion disks and tidal disruption events, to relativistic jets and galaxy clusters with blazar TXS~0506+056 the most compelling association thus far. Since that association, immense effort has been put into proving or disproving that jets are indeed neutrino emitters, but to no avail. By generating simulated neutrino counterpart samples, we explore the potential of detecting a significant correlation of neutrinos with jets from active galactic nuclei. We find that, given the existing challenges, even our best experiments could not have produced a >3σ>3\sigma result. Larger programs over the next few years will be able to detect a significant correlation only if the brightest radio sources, rather than all jetted active galactic nuclei, are neutrino emitters. We discuss the necessary strategies required to steer future efforts into successful experiments.Comment: 8 pages, 1 figure, 1 table, accepted for publication in A&

    RoboPol: First season rotations of optical polarization plane in blazars

    Get PDF
    We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring program of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the dataset obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations have significantly larger amplitude and faster variations of polarization angle in optical than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤1.5×10−2\le 1.5 \times 10^{-2}) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼5×10−5\sim 5 \times 10^{-5}) that none of our rotations is physically connected with an increase in gamma-ray activity.Comment: 16 pages, 9 figure

    Localizing the γ-ray emitting region in the blazar TXS 2013+370

    Get PDF
    Aims. The γ-ray production mechanism and its localization in blazars are still a matter of debate. The main goal of this paper is to constrain the location of the high-energy emission in the blazar TXS 2013+370 and to study the physical and geometrical properties of the inner jet region on sub-pc scales. Methods. TXS 2013+370 was monitored during 2002–2013 with VLBI at 15, 22, 43, and 86 GHz, which allowed us to image the jet base with an angular resolution of ≥0.4 pc. By employing CLEAN imaging and Gaussian model-fitting, we performed a thorough kinematic analysis at multiple frequencies, which provided estimates of the jet speed, orientation, and component ejection times. Additionally, we studied the jet expansion profile and used the information on the jet geometry to estimate the location of the jet apex. VLBI data were combined with single-dish measurements to search for correlated activity between the radio, mm, and γ-ray emission. For this purpose, we employed a cross-correlation analysis, supported by several significance tests. Results. The high-resolution VLBI imaging revealed the existence of a spatially bent jet, described by co-existing moving emission features and stationary features. New jet features, labeled as A1, N, and N1, are observed to emerge from the core, accompanied by flaring activity in radio/mm- bands and γ-rays. The analysis of the transverse jet width profile constrains the location of the mm core to lie ≤2 pc downstream of the jet apex, and also reveals the existence of a transition from parabolic to conical jet expansion at a distance of ∼54 pc from the core, corresponding to ∼1.5 × 106 Schwarzschild radii. The cross-correlation analysis of the broad-band variability reveals a strong correlation between the radio-mm and γ-ray data, with the 1 mm emission lagging ∼49 days behind the γ-rays. Based on this, we infer that the high energy emission is produced at a distance of the order of ∼1 pc from the jet apex, suggesting that the seed photon fields for the external Compton mechanism originate either in the dusty torus or in the broad-line region
    • …
    corecore