148 research outputs found

    Plasma and cavitation dynamics during pulsed laser microsurgery in vivo

    Full text link
    We compare the plasma and cavitation dynamics underlying pulsed laser microsurgery in water and in fruit fly embryos (in vivo) - specifically for nanosecond pulses at 355 and 532 nm. We find two key differences. First, the plasma-formation thresholds are lower in vivo - especially at 355 nm - due to the presence of endogenous chromophores that serve as additional sources for plasma seed electrons. Second, the biological matrix constrains the growth of laser-induced cavitation bubbles. Both effects reduce the disrupted region in vivo when compared to extrapolations from measurements in water.Comment: 9 pages, 5 figure

    MRCK-1 Drives Apical Constriction in C. elegans by Linking Developmental Patterning to Force Generation

    Get PDF
    Apical constriction is a change in cell shape that drives key morphogenetic events including gastrulation and neural tube formation. Apical force-producing actomyosin networks drive apical constriction by contracting while connected to cell-cell junctions. The mechanisms by which developmental patterning regulates these actomyosin networks and associated junctions with spatial precision are not fully understood. Here, we identify a myosin light chain kinase MRCK-1 as a key regulator of C. elegans gastrulation that integrates spatial and developmental patterning information. We show that MRCK-1 is required for activation of contractile actomyosin dynamics and elevated cortical tension in the apical cell cortex of endodermal precursor cells. MRCK-1 is apically localized by active Cdc42 at the external, cell-cell contact-free surfaces of apically constricting cells, downstream of cell fate determination mechanisms. We establish that the junctional components α-catenin, β-catenin, and cadherin become highly enriched at the apical junctions of apically-constricting cells, and that MRCK-1 and myosin activity are required in vivo for this enrichment. Taken together, our results define mechanisms that position a myosin activator to a specific cell surface where it both locally increases cortical tension and locally enriches junctional components to facilitate apical constriction. These results reveal crucial links that can tie spatial information to local force generation to drive morphogenesis

    Drosophila spectrin: the membrane skeleton during embryogenesis.

    Full text link

    Mechanical Stress Inference for Two Dimensional Cell Arrays

    Get PDF
    Many morphogenetic processes involve mechanical rearrangement of epithelial tissues that is driven by precisely regulated cytoskeletal forces and cell adhesion. The mechanical state of the cell and intercellular adhesion are not only the targets of regulation, but are themselves likely signals that coordinate developmental process. Yet, because it is difficult to directly measure mechanical stress {\it in vivo} on sub-cellular scale, little is understood about the role of mechanics of development. Here we present an alternative approach which takes advantage of the recent progress in live imaging of morphogenetic processes and uses computational analysis of high resolution images of epithelial tissues to infer relative magnitude of forces acting within and between cells. We model intracellular stress in terms of bulk pressure and interfacial tension, allowing these parameters to vary from cell to cell and from interface to interface. Assuming that epithelial cell layers are close to mechanical equilibrium, we use the observed geometry of the two dimensional cell array to infer interfacial tensions and intracellular pressures. Here we present the mathematical formulation of the proposed Mechanical Inverse method and apply it to the analysis of epithelial cell layers observed at the onset of ventral furrow formation in the {\it Drosophila} embryo and in the process of hair-cell determination in the avian cochlea. The analysis reveals mechanical anisotropy in the former process and mechanical heterogeneity, correlated with cell differentiation, in the latter process. The method opens a way for quantitative and detailed experimental tests of models of cell and tissue mechanics

    Triggering a Cell Shape Change by Exploiting Preexisting Actomyosin Contractions

    Get PDF
    Apical constriction changes cell shapes, driving critical morphogenetic events including gastrulation in diverse organisms and neural tube closure in vertebrates. Apical constriction is thought to be triggered by contraction of apical actomyosin networks. We found that apical actomyosin contractions began before cell shape changes in both C. elegans and Drosophila. In C. elegans, actomyosin networks were initially dynamic, contracting and generating cortical tension without significant shrinking of apical surfaces. Apical cell-cell contact zones and actomyosin only later moved increasingly in concert, with no detectable change in actomyosin dynamics or cortical tension. Thus, apical constriction appears to be triggered not by a change in cortical tension but by dynamic linking of apical cell-cell contact zones to an already contractile apical cortex

    Probing embryonic tissue mechanics with laser hole-drilling

    Full text link
    We use laser hole-drilling to assess the mechanics of an embryonic epithelium during development - in vivo and with subcellular resolution. We ablate a subcellular cylindrical hole clean through the epithelium, and track the subsequent recoil of adjacent cells (on ms time scales). We investigate dorsal closure in the fruit fly with emphasis on apical constriction of amnioserosa cells. The mechanical behavior of this epithelium falls between that of a continuous sheet and a 2D cellular foam (a network of tensile interfaces). Tensile stress is carried both by cell-cell interfaces and by the cells' apical actin networks. Our results show that stress is slightly concentrated along interfaces (1.6-fold), but only in early closure. Furthermore, closure is marked by a decrease in the recoil power-law exponent - implying a transition to a more solid-like tissue. We use the site- and stage-dependence of the recoil kinetics to constrain how the cellular mechanics change during closure. We apply these results to test extant computational models.Comment: 23 pages with 9 figures (require color

    Drosophila heart cell movement to the midline occurs through both cell autonomous migration and dorsal closure

    Get PDF
    The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype

    Myosin VIIA, Important for Human Auditory Function, Is Necessary for Drosophila Auditory Organ Development

    Get PDF
    BACKGROUND: Myosin VIIA (MyoVIIA) is an unconventional myosin necessary for vertebrate audition [1]-[5]. Human auditory transduction occurs in sensory hair cells with a staircase-like arrangement of apical protrusions called stereocilia. In these hair cells, MyoVIIA maintains stereocilia organization [6]. Severe mutations in the Drosophila MyoVIIA orthologue, crinkled (ck), are semi-lethal [7] and lead to deafness by disrupting antennal auditory organ (Johnston's Organ, JO) organization [8]. ck/MyoVIIA mutations result in apical detachment of auditory transduction units (scolopidia) from the cuticle that transmits antennal vibrations as mechanical stimuli to JO. PRINCIPAL FINDINGS: Using flies expressing GFP-tagged NompA, a protein required for auditory organ organization in Drosophila, we examined the role of ck/MyoVIIA in JO development and maintenance through confocal microscopy and extracellular electrophysiology. Here we show that ck/MyoVIIA is necessary early in the developing antenna for initial apical attachment of the scolopidia to the articulating joint. ck/MyoVIIA is also necessary to maintain scolopidial attachment throughout adulthood. Moreover, in the adult JO, ck/MyoVIIA genetically interacts with the non-muscle myosin II (through its regulatory light chain protein and the myosin binding subunit of myosin II phosphatase). Such genetic interactions have not previously been observed in scolopidia. These factors are therefore candidates for modulating MyoVIIA activity in vertebrates. CONCLUSIONS: Our findings indicate that MyoVIIA plays evolutionarily conserved roles in auditory organ development and maintenance in invertebrates and vertebrates, enhancing our understanding of auditory organ development and function, as well as providing significant clues for future research
    • …
    corecore