433 research outputs found
Thermal conductive connection and method of making same Patent
Thermal conductive, electrically insulated cleavable adhesive connection between electronic module and heat sin
New Asymptotic Expanstion Method for the Wheeler-DeWitt Equation
A new asymptotic expansion method is developed to separate the Wheeler-DeWitt
equation into the time-dependent Schr\"{o}dinger equation for a matter field
and the Einstein-Hamilton-Jacobi equation for the gravitational field including
the quantum back-reaction of the matter field. In particular, the nonadiabatic
basis of the generalized invariant for the matter field Hamiltonian separates
the Wheeler-DeWitt equation completely in the asymptotic limit of
approaching infinity. The higher order quantum corrections of the gravity to
the matter field are found. The new asymptotic expansion method is valid
throughout all regions of superspace compared with other expansion methods with
a certain limited region of validity. We apply the new asymptotic expansion
method to the minimal FRW universe.Comment: 24 pages of Latex file, revte
Quantum Cosmology of Kantowski-Sachs like Models
The Wheeler-DeWitt equation for a class of Kantowski-Sachs like models is
completely solved. The generalized models include the Kantowski-Sachs model
with cosmological constant and pressureless dust. Likewise contained is a
joined model which consists of a Kantowski-Sachs cylinder inserted between two
FRW half--spheres. The (second order) WKB approximation is exact for the wave
functions of the complete set and this facilitates the product structure of the
wave function for the joined model. In spite of the product structure the wave
function can not be interpreted as admitting no correlations between the
different regions. This problem is due to the joining procedure and may
therefore be present for all joined models. Finally, the {s}ymmetric {i}nitial
{c}ondition (SIC) for the wave function is analyzed and compared with the ``no
bouindary'' condition. The consequences of the different boundary conditions
for the arrow of time are briefly mentioned.Comment: 21 pages, uses LaTeX2e, epsf.sty and float.sty, three figures (50
kb); changes: one figure added, new interpretation of quantizing procedure
for the joined model and many minor change
Must Quantum Spacetimes Be Euclidean?
The Bohm-de Broglie interpretation of quantum mechanics is applied to
canonical quantum cosmology. It is shown that, irrespective of any
regularization or choice of factor ordering of the Wheeler-DeWitt equation, the
unique relevant quantum effect which does not break spacetime is the change of
its signature from lorentzian to euclidean. The other quantum effects are
either trivial or break the four-geometry of spacetime. A Bohm-de Broglie
picture of a quantum geometrodynamics is constructed, which allows the
investigation of these latter structures. For instance, it is shown that any
real solution of the Wheeler-De Witt equation yields a generate four-geometry
compatible with the strong gravity limit of General Relativity and the Carroll
group. Due to the more detailed description of quantum geometrodynamics given
by the Bohm-de Broglie interpretation, some new boundary conditions on
solutions of the Wheeler-DeWitt equation must be imposed in order to preserve
consistency of this finer view.Comment: 42 pages LaTeX, last version with minor corrections, being the most
importants on pages 0, 6, 11, 21, 23, and 30 . The new title does not change
our conclusion
Quantization of Midisuperspace Models
We give a comprehensive review of the quantization of midisuperspace models.
Though the main focus of the paper is on quantum aspects, we also provide an
introduction to several classical points related to the definition of these
models. We cover some important issues, in particular, the use of the principle
of symmetric criticality as a very useful tool to obtain the required
Hamiltonian formulations. Two main types of reductions are discussed: those
involving metrics with two Killing vector fields and spherically symmetric
models. We also review the more general models obtained by coupling matter
fields to these systems. Throughout the paper we give separate discussions for
standard quantizations using geometrodynamical variables and those relying on
loop quantum gravity inspired methods.Comment: To appear in Living Review in Relativit
Dirac's Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge
We define the {\it rest-frame instant form} of tetrad gravity restricted to
Christodoulou-Klainermann spacetimes. After a study of the Hamiltonian group of
gauge transformations generated by the 14 first class constraints of the
theory, we define and solve the multitemporal equations associated with the
rotation and space diffeomorphism constraints, finding how the cotriads and
their momenta depend on the corresponding gauge variables. This allows to find
quasi-Shanmugadhasan canonical transformation to the class of 3-orthogonal
gauges and to find the Dirac observables for superspace in these gauges.
The construction of the explicit form of the transformation and of the
solution of the rotation and supermomentum constraints is reduced to solve a
system of elliptic linear and quasi-linear partial differential equations. We
then show that the superhamiltonian constraint becomes the Lichnerowicz
equation for the conformal factor of the 3-metric and that the last gauge
variable is the momentum conjugated to the conformal factor. The gauge
transformations generated by the superhamiltonian constraint perform the
transitions among the allowed foliations of spacetime, so that the theory is
independent from its 3+1 splittings. In the special 3-orthogonal gauge defined
by the vanishing of the conformal factor momentum we determine the final Dirac
observables for the gravitational field even if we are not able to solve the
Lichnerowicz equation. The final Hamiltonian is the weak ADM energy restricted
to this completely fixed gauge.Comment: RevTeX file, 141 page
Decoherence, the measurement problem, and interpretations of quantum mechanics
Environment-induced decoherence and superselection have been a subject of
intensive research over the past two decades, yet their implications for the
foundational problems of quantum mechanics, most notably the quantum
measurement problem, have remained a matter of great controversy. This paper is
intended to clarify key features of the decoherence program, including its more
recent results, and to investigate their application and consequences in the
context of the main interpretive approaches of quantum mechanics.Comment: 41 pages. Final published versio
Stochastic Gravity: A Primer with Applications
Stochastic semiclassical gravity of the 90's is a theory naturally evolved
from semiclassical gravity of the 70's and 80's. It improves on the
semiclassical Einstein equation with source given by the expectation value of
the stress-energy tensor of quantum matter fields in curved spacetimes by
incorporating an additional source due to their fluctuations. In stochastic
semiclassical gravity the main object of interest is the noise kernel, the
vacuum expectation value of the (operator-valued) stress-energy bi-tensor, and
the centerpiece is the (stochastic) Einstein-Langevin equation. We describe
this new theory via two approaches: the axiomatic and the functional. The
axiomatic approach is useful to see the structure of the theory from the
framework of semiclassical gravity. The functional approach uses the
Feynman-Vernon influence functional and the Schwinger-Keldysh close-time-path
effective action methods which are convenient for computations. It also brings
out the open systems concepts and the statistical and stochastic contents of
the theory such as dissipation, fluctuations, noise and decoherence. We then
describe the application of stochastic gravity to the backreaction problems in
cosmology and black hole physics. Intended as a first introduction to this
subject, this article places more emphasis on pedagogy than completeness.Comment: 46 pages Latex. Intended as a review in {\it Classical and Quantum
Gravity
Towards Machine Wald
The past century has seen a steady increase in the need of estimating and
predicting complex systems and making (possibly critical) decisions with
limited information. Although computers have made possible the numerical
evaluation of sophisticated statistical models, these models are still designed
\emph{by humans} because there is currently no known recipe or algorithm for
dividing the design of a statistical model into a sequence of arithmetic
operations. Indeed enabling computers to \emph{think} as \emph{humans} have the
ability to do when faced with uncertainty is challenging in several major ways:
(1) Finding optimal statistical models remains to be formulated as a well posed
problem when information on the system of interest is incomplete and comes in
the form of a complex combination of sample data, partial knowledge of
constitutive relations and a limited description of the distribution of input
random variables. (2) The space of admissible scenarios along with the space of
relevant information, assumptions, and/or beliefs, tend to be infinite
dimensional, whereas calculus on a computer is necessarily discrete and finite.
With this purpose, this paper explores the foundations of a rigorous framework
for the scientific computation of optimal statistical estimators/models and
reviews their connections with Decision Theory, Machine Learning, Bayesian
Inference, Stochastic Optimization, Robust Optimization, Optimal Uncertainty
Quantification and Information Based Complexity.Comment: 37 page
Interactions between HIV-1 Reverse Transcriptase and the Downstream Template Strand in Stable Complexes with Primer-Template
Background: Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) forms stable ternary complexes in which RT is bound tightly at fixed positions on the primer-template (P/T). We have probed downstream interactions between RT and the template strand in the complex containing the incoming dNTP (+1 dNTPNRTNP/T complex) and in the complex containing the pyrophosphate analog, foscarnet (foscarnetNRTNP/T complex). Methods and Results: UV-induced cross-linking between RT and the DNA template strand was most efficient when a bromodeoxyuridine residue was placed in the +2 position (the first template position downstream from the incoming dNTP). Furthermore, formation of the +1 dNTPNRTNP/T complex on a biotin-containing template inhibited binding of streptavidin when biotin was in the +2 position on the template but not when the biotin was in the +3 position. Streptavidin pre-bound to a biotin residue in the template caused RT to stall two to three nucleotides upstream from the biotin residue. The downstream border of the complex formed by the stalled RT was mapped by digestion with exonuclease RecJF. UV-induced cross-linking of the complex formed by the pyrophosphate analog, foscarnet, with RT and P/T occurred preferentially with bromodeoxyuridine in the +1 position on the template in keeping with the location of RT one base upstream in the foscarnetNRTNP/T complex (i.e., in the pre-translocation position). Conclusions: For +1 dNTPNRTNP/T and foscarnetNRTNP/T stable complexes, tight interactions were observed between RT an
- …