759 research outputs found

    Proteins involved in endocytosis are upregulated by ageing in the normal human brain: Implications for the development of Alzheimer's Disease

    Get PDF
    © The Author(s) 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. The greatest risk factor for Alzheimer's disease (AD) is advanced age, but the reason for this association remains unclear. Amyloid-β (Aβ) is produced from amyloid precursor protein (APP) primarily after APP is internalized by clathrin-mediated or clathrin-independent endocytosis. Changes in endocytosis in AD have been identified. We hypothesized that endocytic protein expression is altered during ageing, thus influencing the likelihood of developing AD by increasing Aβ production. We explored how levels of endocytic proteins, APP, its metabolites, secretase enzymes, and tau varied with age in cortical brain samples from men of three age ranges (young [20-30], middle aged [45-55], and old [70-90]) with no symptoms of dementia. Aβ40 and Aβ42 were significantly increased in old brains, while APP and secretase expression was unaffected by age. Phosphorylated GSK3β increased significantly with age, a possible precursor for neurofibrillary tangle production, although phosphorylated tau was undetectable. Significant increases in clathrin, dynamin-1, AP180, Rab-5, caveolin-2, and flotillin-2 were seen in old brains. Rab-5 also increased in middle-aged brains prior to changes in Aβ levels. This age-related increase in endocytic protein expression, not described previously, suggests an age-related upregulation of endocytosis which could predispose older individuals to develop AD by increasing APP internalization and Aβ generation

    Intraventricular Sialidase Administration Enhances GM1 Ganglioside Expression and Is Partially Neuroprotective in a Mouse Model of Parkinson\u27s Disease.

    Get PDF
    BACKGROUND: Preclinical and clinical studies have previously shown that systemic administration of GM1 ganglioside has neuroprotective and neurorestorative properties in Parkinson\u27s disease (PD) models and in PD patients. However, the clinical development of GM1 for PD has been hampered by its animal origin (GM1 used in previous studies was extracted from bovine brains), limited bioavailability, and limited blood brain barrier penetrance following systemic administration. OBJECTIVE: To assess an alternative therapeutic approach to systemic administration of brain-derived GM1 to enhance GM1 levels in the brain via enzymatic conversion of polysialogangliosides into GM1 and to assess the neuroprotective potential of this approach. METHODS: We used sialidase from Vibrio cholerae (VCS) to convert GD1a, GD1b and GT1b gangliosides to GM1. VCS was infused by osmotic minipump into the dorsal third ventricle in mice over a 4-week period. After the first week of infusion, animals received MPTP injections (20 mg/kg, s.c., twice daily, 4 hours apart, for 5 consecutive days) and were euthanized 2 weeks after the last injection. RESULTS: VCS infusion resulted in the expected change in ganglioside expression with a significant increase in GM1 levels. VCS-treated animals showed significant sparing of striatal dopamine (DA) levels and substantia nigra DA neurons following MPTP administration, with the extent of sparing of DA neurons similar to that achieved with systemic GM1 administration. CONCLUSION: The results suggest that enzymatic conversion of polysialogangliosides to GM1 may be a viable treatment strategy for increasing GM1 levels in the brain and exerting a neuroprotective effect on the damaged nigrostriatal DA system

    Repulsive Axon Guidance Abelson and Enabled Play Opposing Roles Downstream of the Roundabout Receptor

    Get PDF
    AbstractDrosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Little is known about the signaling mechanisms which function downstream of Robo to mediate repulsion. Here, we present genetic and biochemical evidence that the Abelson (Abl) tyrosine kinase and its substrate Enabled (Ena) play direct and opposing roles in Robo signal transduction. Genetic interactions support a model in which Abl functions to antagonize Robo signaling, while Ena is required in part for Robo's repulsive output. Both Abl and Ena can directly bind to Robo's cytoplasmic domain. A mutant form of Robo that interferes with Ena binding is partially impaired in Robo function, while a mutation in a conserved cytoplasmic tyrosine that can be phosphorylated by Abl generates a hyperactive Robo receptor

    Selective reduction of APP-BACE1 activity improves memory via NMDA-NR2B receptor-mediated mechanisms in aged PDAPP mice

    Get PDF
    β-Amyloid (Aβ) accumulation is an early event of Alzheimer's disease (AD) pathogenesis. Inhibition of Aβ production by β-secretase (BACE) has been proposed as a potential therapeutic strategy for AD. However, BACE inhibitors lack specificity and have had limited clinical benefit. To better study the consequences of reducing BACE metabolism, specifically of APP, we used an antibody, 2B3, that binds to APP at the BACE cleavage site, inhibiting Aβ production. 2B3 was administered either directly into the lateral ventricles or by intraperitoneal injection to (platelet-derived growth factor promoter hAPP717V (PDAPP) mice and WT mice. 2B3 reduced soluble Aβ40 and βCTF (β-amyloid derived C-terminal fragment) and improved memory for object-in-place associations and working memory in a foraging task in PDAPP mice. 2B3 also normalized the phosphorylation of the N-methyl-D-aspartate receptor NR2B subunit and subsequent extracellular signal-regulated kinase signaling. The importance of this NR2B pathway for OiP memory was confirmed by administering the NR2B antagonist, Ro25-6981, to 18-month-old WT. In contrast, 2B3 impaired associative recognition memory in young WT mice. These data provide novel insights into the mechanism by which selective modulation of APP metabolism by BACE influences synaptic and cognitive processes in both normal mice and aged APP transgenic mice

    Alterations in endocytic protein expression with increasing age in the transgenic APP695 V717I London mouse model of amyloid pathology: Implications for Alzheimer's disease

    Get PDF
    Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved. A major risk factor for the development of Alzheimer's disease (AD) is increasing age, but the reason behind this association has not been identified. It is thought that the changes in endocytosis seen in AD patients are causal for this condition. Thus, we hypothesized that the increased risk of developing AD associated with ageing may be because of changes in endocytosis. We investigated using Western blotting whether the expression of endocytic proteins involved in clathrin-mediated and clathrin-independent endocytosis are altered by increasing age in a mouse model of amyloid pathology. We used mice transgenic for human amyloid precursor protein containing the V717I London mutation. We compared the London mutation mice with age-matched wild-type (WT) controls at three ages, 3, 9 and 18 months, representing different stages in the development of pathology in this model. Having verified that the London mutation mice overexpressed amyloid precursor protein and β-amyloid, we found that the expression of the smallest isoform of PICALM, a key protein involved in the regulation of clathrin-coated pit formation, was significantly increased in WT mice, but decreased in the London mutation mice with age. PICALM levels in WT 18-month mice and clathrin levels in WT 9-month mice were significantly higher than those in the London mutation mice of the same ages. The expression of caveolin-1, involved in clathrin-independent endocytosis, was significantly increased with age in all mice. Our results suggest that endocytic processes could be altered by the ageing process and such changes could partly explain the association between ageing and AD

    Route of administration affects corticosteroid sensitivity of a combined ovalbumin and lipopolysaccharide model of asthma exacerbation in guinea-pigs

    Get PDF
    Lipopolysaccharide (LPS) contributes to asthma exacerbations and development of inhaled corticosteroid insensitivity. Complete resistance to systemic corticosteroids is rare and most patients lie on a continuum of steroid responsiveness. The objective of this study was to examine the sensitivity of combined ovalbumin- (Ova) and LPS-induced functional and inflammatory responses to inhaled and systemic corticosteroid in conscious guinea-pigs, to test the hypothesis that the route of administration affects its sensitivity. Guinea-pigs were sensitised to Ova and challenged with inhaled Ova alone or combined with LPS. Airways function was determined by measuring specific airways conductance via whole-body plethysmography. Airways hyperresponsiveness to histamine was determined pre- and 24h post-Ova challenge. Airways inflammation and underlying mechanisms were determined from bronchoalveolar lavage cell counts and lung tissue cytokines. Vehicle or dexamethasone was administered by once-daily intraperitoneal injection (5, 10 or 20 mg/kg) or twice-daily inhalation (4 or 20 mg/ml) for 6 days before Ova challenge or Ova with LPS. LPS exacerbated Ova-induced responses, elongating early asthmatic responses (EAR), prolonging bronchoconstriction by histamine and further elevating airways inflammation. Intraperitoneal dexamethasone (20 mg/kg) significantly reduced the elongated EAR and airways inflammation but not the increased bronchoconstriction to histamine. In contrast, inhaled dexamethasone (20 mg/ml), which inhibited responses to Ova alone, did not significantly reduce functional and inflammatory responses to combined Ova and LPS. Combined Ova and LPS-induced functional and inflammatory responses are insensitive to inhaled but only partially sensitive to systemic dexamethasone. These results suggest that the route of corticosteroid administration may be important in determining the sensitivity of asthmatic responses to these agents

    The impact of sound field systems on learning and attention in elementary school classrooms

    Get PDF
    Purpose: An evaluation of the installation and use of sound field systems (SFS) was carried out to investigate their impact on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers and experimental testing of students with and without the use of SFS. Students ’ perceptions of classroom environments and objective data evaluating change in performance on cognitive and academic assessments with amplification over a six month period are reported. Results: Teachers were positive about the use of SFS in improving children’s listening and attention to verbal instructions. Over time students in amplified classrooms did not differ from those in nonamplified classrooms in their reports of listening conditions, nor did their performance differ in measures of numeracy, reading or spelling. Use of SFS in the classrooms resulted in significantly larger gains in performance in the number of correct items on the nonverbal measure of speed of processing and the measure of listening comprehension. Analysis controlling for classroom acoustics indicated that students ’ listening comprehension score

    Evaluation of Host Serum Protein Biomarkers of Tuberculosis in sub-Saharan Africa.

    Get PDF
    Accurate and affordable point-of-care diagnostics for tuberculosis (TB) are needed. Host serum protein signatures have been derived for use in primary care settings, however validation of these in secondary care settings is lacking. We evaluated serum protein biomarkers discovered in primary care cohorts from Africa reapplied to patients from secondary care. In this nested case-control study, concentrations of 22 proteins were quantified in sera from 292 patients from Malawi and South Africa who presented predominantly to secondary care. Recruitment was based upon intention of local clinicians to test for TB. The case definition for TB was culture positivity for Mycobacterium tuberculosis; and for other diseases (OD) a confirmed alternative diagnosis. Equal numbers of TB and OD patients were selected. Within each group, there were equal numbers with and without HIV and from each site. Patients were split into training and test sets for biosignature discovery. A nine-protein signature to distinguish TB from OD was discovered comprising fibrinogen, alpha-2-macroglobulin, CRP, MMP-9, transthyretin, complement factor H, IFN-gamma, IP-10, and TNF-alpha. This signature had an area under the receiver operating characteristic curve in the training set of 90% (95% CI 86-95%), and, after adjusting the cut-off for increased sensitivity, a sensitivity and specificity in the test set of 92% (95% CI 80-98%) and 71% (95% CI 56-84%), respectively. The best single biomarker was complement factor H [area under the receiver operating characteristic curve 70% (95% CI 64-76%)]. Biosignatures consisting of host serum proteins may function as point-of-care screening tests for TB in African hospitals. Complement factor H is identified as a new biomarker for such signatures
    • …
    corecore