3,189 research outputs found
Measurement of the elastic scattering cross section of neutrons from argon and neon
Background: The most significant source of background in direct dark matter
searches are neutrons that scatter elastically from nuclei in the detector's
sensitive volume. Experimental data for the elastic scattering cross section of
neutrons from argon and neon, which are target materials of interest to the
dark matter community, were previously unavailable. Purpose: Measure the
differential cross section for elastic scattering of neutrons from argon and
neon in the energy range relevant to backgrounds from (alpha,n) reactions in
direct dark matter searches. Method: Cross-section data were taken at the
Triangle Universities Nuclear Laboratory (TUNL) using the neutron
time-of-flight technique. These data were fit using the spherical optical
model. Results: The differential cross section for elastic scatting of neutrons
from neon at 5.0 and 8.0 MeV and argon at 6.0 MeV was measured. Optical-model
parameters for the elastic scattering reactions were determined from the best
fit to these data. The total elastic scattering cross section for neon was
found to differ by 6% at 5.0 MeV and 13% at 8.0 MeV from global optical-model
predictions. Compared to a local optical-model for 40Ar, the elastic scattering
cross section was found to differ from the data by 8% at 6.0 MeV. Conclusions:
These new data are important for improving Monte-Carlo simulations and
background estimates for direct dark matter searches and for benchmarking
optical models of neutron elastic scattering from these nuclei
Global tectonic studies: Hotspots and anomalous topography
Volcanic activity on Earth and its secular variations are compared with that on other terrestrial planets. Activity at divergent, transform, and convergent plate margins is described with particular emphasis on hot spots and flood basalts. The timing and causing of uplifting above 500 meters, which in not associated with either plate boundaries or the normal nonplate margin edges of continents is considered with particular focus on the Guyana Highlands in southern Venezuela and western British Guiana, and the Brazilian Highlands in the central, eastern, and southern parts of the country. The mode and mechanism of plateau uplifting and the re-elevation of old mountain belts and subsidence of intra-continental basins are also discussed
Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project
Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product
Doping of a One-Dimensional Mott Insulator: Photoemision and Optical Studies of SrCuO
The spectral properties of a one-dimensional (1D) single-chain Mott insulator
SrCuO have been studied in angle-resolved photoemission and optical
spectroscopy, at half filling and with small concentrations of extra charge
doped into the chains via high oxygen pressure growth. The single- particle gap
is reduced with oxygen doping, but the metallic state is not reached. The
bandwidth of the charge-transfer band increases with doping, while the state
becomes narrower, allowing unambiguous observation of separated spinon and
holon branches in the doped system. The optical gap is not changed upon doping,
indicating that a shift of chemical potential rather than decrease of
corelation gap is responsible for the apparent reduction of the photoemission
gap.Comment: 4 pages, 2 figure
Comparison of three commercial sparse-matrix crystallization screens
Sparse-matrix sampling using commercially available crystallization screen kits has become the most popular way of determining the preliminary crystallization conditions for macromolecules. In this study, the efficiency of three commercial screening kits, Crystal Screen and Crystal Screen 2 (Hampton Research), Wizard Screens I and II (Emerald BioStructures) and Personal Structure Screens 1 and 2 (Molecular Dimensions), has been compared using a set of 19 diverse proteins. 18 proteins yielded crystals using at least one crystallization screen. Surprisingly, Crystal Screens and Personal Structure Screens showed dramatically different results, although most of the crystallization formulations are identical as listed by the manufacturers. Higher molecular weight polyethylene glycols and mixed precipitants were found to be the most effective precipitants in this study
A Variant in a MicroRNA complementary site in the 3' UTR of the KIT oncogene increases risk of acral melanoma.
MicroRNAs (miRNAs) are small ∼22nt single stranded RNAs that negatively regulate protein expression by binding to partially complementary sequences in the 3' untranslated region (3' UTRs) of target gene messenger RNAs (mRNA). Recently, mutations have been identified in both miRNAs and target genes that disrupt regulatory relationships, contribute to oncogenesis and serve as biomarkers for cancer risk. KIT, an established oncogene with a multifaceted role in melanogenesis and melanoma pathogenesis, has recently been shown to be upregulated in some melanomas, and is also a target of the miRNA miR-221. Here, we describe a genetic variant in the 3' UTR of the KIT oncogene that correlates with a greater than fourfold increased risk of acral melanoma. This KIT variant results in a mismatch in the seed region of a miR-221 complementary site and reporter data suggests that this mismatch can result in increased expression of the KIT oncogene. Consistent with the hypothesis that this is a functional variant, KIT mRNA and protein levels are both increased in the majority of samples harboring the KIT variant. This work identifies a novel genetic marker for increased heritable risk of melanoma
PERIOD DETERMINATION FOR NEA (162421) 2000 ET70
Lightcurve analysis for (162421) 2000 ET70 was performed in collaboration with observers in Uruguay, Australia, and the United States from observations obtained during the asteroid’s favorable opposition in 2012. The synodic rotation period was found to be 8.947 ± 0.001 h and the lightcurve amplitude was 0.60 ± 0.07 mag
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
8077 HOYLE: A SHORT PERIOD ASTEROID
The main-belt asteroid 8077 Hoyle was observed on 13 nights over a span of 47 days in 2012 April-May. A bimodal synodic period of 2.7454 ± 0.0002 h and an amplitude of 0.20 ± 0.02 mag. were obtained
Metal-Insulator Transition and Magnetic Order in the Pyrochlore Oxide Hg2Ru2O7
We report results of NMR experiments on the ruthenium oxide Hg2Ru2O7 with the
pyrochlore structure, which exhibits a metal-insulator transition at TMI = 107
K. In the metallic phase above TMI, the nuclear spin-lattice relaxation rate
1/T1 and the Knight shift at the Hg sites follow the Korringa relation,
indicating the absence of substantial spatial spin correlation. At low
temperatures in the insulating phase, 99,101Ru-NMR signals are observed at zero
magnetic field, providing evidence for a commensurate antiferromagnetic order.
The estimated ordered moment is about 1 muB per Ru, much smaller than 3 muB
expected for the ionic (4d)3plus configuration of Ru5plus. Thus the localized
spin models are not appropriate for the insulating phase of Hg2Ru2O7. We also
discuss possible antiferromagnetic spin structures.Comment: 10 pages, 7 figure
- …