312 research outputs found

    Endoscopy is of low yield in the identification of gastrointestinal neoplasia in patients with dermatomyositis: A cross-sectional study.

    Get PDF
    AimTo determine the prevalence of gastrointestinal neoplasia among dermatomyositis patients who underwent an esophagogastroduodenoscopy and/or colonoscopy.MethodsA cross-sectional study examining the results of upper endoscopy and colonoscopy in adults with dermatomyositis at an urban, university hospital over a ten year period was performed. Chart review was performed to confirm the diagnosis of dermatomyositis. Findings on endoscopy were collected and statistical analyses stratified by age and presence of symptoms were performed.ResultsAmong 373 adult patients identified through a code based search strategy, only 163 patients had dermatomyositis confirmed by chart review. Of the 47 patients who underwent upper endoscopy, two cases of Barrett's esophagus without dysplasia were identified and there were no cases of malignancy. Of the 67 patients who underwent colonoscopy, no cases of malignancy were identified and an adenoma was identified in 15% of cases. No significant differences were identified in the yield of endoscopy when stratified by age or presence of symptoms.ConclusionThe yield of endoscopy is low in patients with dermatomyositis and is likely similar to the general population; we identified no cases of malignancy. A code based search strategy is inaccurate for the diagnosis of dermatomyositis, calling into question the results of prior population-based studies. Larger studies with rigorously validated search strategies are necessary to understand the risk of gastrointestinal malignancy in patients with dermatomyositis

    Graphene-based ultrathin flat lenses

    Get PDF
    Flat lenses when compared to curved surface lenses have the advantages of being aberration free and they offer a compact design necessary for a myriad of electro-optical applications. In this paper we present flat and ultra-thin lenses based on graphene, the world’s thinnest known material. Monolayers and low number multilayers of graphene were fabricated into Fresnel zones to produce Fresnel zone plates which utilize the reflection and transmission properties of graphene for their operation. The working of the lens and their performance in the visible and terahertz regimes was analyzed computationally. Experimental measurements were also performed to characterize the lens in the visible regime and a good agreement was obtained with the simulations. The work demonstrates the principle of atom thick graphene-based lenses, with perspectives for ultra-compact integration.HB would like to thank The Leverhulme Trust for the research funding. QD is supported by Bureau of International Cooperation, Chinese Academy of Sciences (121D11KYSB20130013).This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/ph500197j

    Adaptation of Energy Dissipation in a Mechanical Metastable Module Excited Near Resonance

    Get PDF
    Recent studies have demonstrated that the energetic vibrations of strategically designed negative stiffness inclusions may lead to large and adaptable damping in structural/material systems. Many researchers examine these features using models of bistable elements. From the viewpoint of system integration, bistable, negative stiffness elements often interface with positive stiffness elastic members. Under such conditions, the structural/material system may exhibit coexisting metastable states. In other words, the macroscopic displacement/strain remains fixed while the reaction force may vary due to internal change, similar to a phase transition. This coexistence of metastable states is not manifested in an individual (stand-alone) bistable element. Although the static and low frequency linear dynamics of structural/material systems possessing coexisting metastable states have been explored, much remains to be understood regarding the dynamics and energy dissipation characteristics of such systems when excited near resonance, where nonlinear dynamics are more easily activated and damping design is of greater importance. Thus, to effectively elucidate the enhanced versatility of damping properties afforded by exploiting negative stiffness inclusions in structural/material systems, this research investigates a mechanical module which leverages a coexistence of metastable states: an archetypal building block for system assembly. The studies employ analytical, numerical, and experimental findings to probe how near-resonant excitation can trigger multiple dynamic states, each resulting in distinct energy dissipation features. It is shown that, for lightly damped metastable mechanical modules, the effective energy dissipation may be varied across orders of magnitude via tailoring design and excitation parameters

    Increased liver stiffness promotes hepatitis B progression by impairing innate immunity in CCl4-induced fibrotic HBV\u3csup\u3e+\u3c/sup\u3e transgenic mice

    Get PDF
    Background: Hepatitis B virus (HBV) infection develops as an acute or chronic liver disease, which progresses from steatosis, hepatitis, and fibrosis to end-stage liver diseases such as cirrhosis and hepatocellular carcinoma (HCC). An increased stromal stiffness accompanies fibrosis in chronic liver diseases and is considered a strong predictor for disease progression. The goal of this study was to establish the mechanisms by which enhanced liver stiffness regulates HBV infectivity in the fibrotic liver tissue. Methods: For in vitro studies, HBV-transfected HepG2.2.15 cells were cultured on polydimethylsiloxane gels coated by polyelectrolyte multilayer films of 2 kPa (soft) or 24 kPa (stiff) rigidity mimicking the stiffness of the healthy or fibrotic liver. For in vivo studies, hepatic fibrosis was induced in C57Bl/6 parental and HBV+ transgenic (HBVTg) mice by injecting CCl4 twice a week for 6 weeks. Results: We found higher levels of HBV markers in stiff gel-attached hepatocytes accompanied by up-regulated OPN content in cell supernatants as well as suppression of anti-viral interferon-stimulated genes (ISGs). This indicates that pre-requisite “fibrotic” stiffness increases osteopontin (OPN) content and releases and suppresses anti-viral innate immunity, causing a subsequent rise in HBV markers expression in hepatocytes. In vitro results were corroborated by data from HBVTg mice administered CCl4 (HBVTg CCl4). These mice showed higher HBV RNA, DNA, HBV core antigen (HBcAg), and HBV surface antigen (HBsAg) levels after liver fibrosis induction as judged by a rise in Col1a1, SMA, MMPs, and TIMPs mRNAs and by increased liver stiffness. Importantly, CCl4-induced the pro-fibrotic activation of liver cells, and liver stiffness was higher in HBVTg mice compared with control mice. Elevation of HBV markers and OPN levels corresponded to decreased ISG activation in HBVTg CCl4 mice vs HBVTg control mice. Conclusion: Based on our data, we conclude that liver stiffness enhances OPN levels to limit anti-viral ISG activation in hepatocytes and promote an increase in HBV infectivity, thereby contributing to end-stage liver disease progression
    • …
    corecore