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Adaptation of Energy Dissipation
in a Mechanical Metastable
Module Excited Near Resonance
Recent studies have demonstrated that the energetic vibrations of strategically designed
negative stiffness inclusions may lead to large and adaptable damping in structural/mate-
rial systems. Many researchers examine these features using models of bistable elements.
From the viewpoint of system integration, bistable, negative stiffness elements often inter-
face with positive stiffness elastic members. Under such conditions, the structural/mate-
rial system may exhibit coexisting metastable states. In other words, the macroscopic
displacement/strain remains fixed while the reaction force may vary due to internal
change, similar to a phase transition. This coexistence of metastable states is not
manifested in an individual (stand-alone) bistable element. Although the static and low
frequency linear dynamics of structural/material systems possessing coexisting metasta-
ble states have been explored, much remains to be understood regarding the dynamics
and energy dissipation characteristics of such systems when excited near resonance,
where nonlinear dynamics are more easily activated and damping design is of greater im-
portance. Thus, to effectively elucidate the enhanced versatility of damping properties
afforded by exploiting negative stiffness inclusions in structural/material systems, this
research investigates a mechanical module which leverages a coexistence of metastable
states: an archetypal building block for system assembly. The studies employ analytical,
numerical, and experimental findings to probe how near-resonant excitation can trigger
multiple dynamic states, each resulting in distinct energy dissipation features. It is shown
that, for lightly damped metastable mechanical modules, the effective energy dissipation
may be varied across orders of magnitude via tailoring design and excitation parameters.
[DOI: 10.1115/1.4031411]

1 Introduction and Research Goals

Many modern engineering applications would greatly benefit
from the availability of structural and material systems demon-
strating large and adaptable energy dissipation. For example, a
structure may call for large damping to preserve system integrity
under sudden, extreme loading events, whereas a more easily
excited vibrational response may be preferred to effectively trans-
mit dynamic signals for system identification or damage detection.
In recent years, researchers have investigated the use of negative stiff-
ness inclusions in structures and materials in order to achieve large
and adaptable damping properties. In particular, bistable elements
exhibiting negative stiffness have shown potential for significant and
tunable damping, primarily due to energetic transitions between stable
equilibrium positions, a phenomenon termed snap-through.

The physical properties of composite materials fabricated with
negative stiffness inclusions within a positive stiffness host struc-
ture have been of particular research interest. Lakes [1] and Wang
and Lakes [2] demonstrated large macroscopic energy dissipation
when the temperature of such a composite was held within a criti-
cal regime; outside of this temperature range, material damping
was reduced. Klatt and Haberman [3] developed a multiscale
model to understand the variation in effective macroscopic prop-
erties due to tailoring microstructural composition of positive and
negative stiffness constituents. Kochmann [4] derived stability cri-
teria for viscoelastic composite media having a non-positive-
definite (negative) stiffness phase, thereby providing guidelines
for material selection and processing to obtain extreme damping
properties under conditions of low frequency linear oscillations.

Barbarino et al. [5] numerically quantified the energy dissipa-
tion capabilities of an individual, harmonically excited bistable
von Mises truss, demonstrating large change in damping as device
configuration and excitation frequency were varied. Johnson et al.
[6] explored damping enhancement and adaptation that was facili-
tated by a compressed spring–mass bistable device, and evaluated
the influence of initial conditions on power dissipation perform-
ance. Using an additive manufacturing technique, Kashdan et al.
[7] fabricated a fully nylon-based vibration isolator composed
from an axially compressed beam connected in series with a linear
spring to investigate the transmissibility and damping tunability
enabled by tailoring the precompression distance while the overall
vibration levels were held within a linear regime, while Fulcher
et al. [8] assessed the accuracy of an analytical model toward pre-
dicting the isolation performance of comparable device platforms.
Dong and Lakes [9] examined parallel column systems subjected
to low frequency harmonic loads, showing that weaker columns
of the system would buckle (become bistable) to effect large
damping. Nadkarni et al. [10] discovered three dynamic regimes
of wave propagation in a chain of bistable elements, while Cohen
and Givli [11] explored a biologically inspired design consisting
of series-connected bistable/bilinear elements that might enhance
shock absorption capacity by a “reversible rupture” phenomenon.

The previous works conclusively find that negative stiffness
inclusions (i.e., bistable devices/elements) can yield significant
energy dissipation under strategic situations. From the viewpoint
of system integration, bistable, negative stiffness elements often
interface with positive stiffness elastic members. A fundamental,
one-dimensional, and unit-level model of the integration may be
of bistable and linear (positive stiffness) springs in series [4,12],
which exhibits very different properties compared to an individual
bistable element. To clarify the considerable distinctions, the inset
of Fig. 1(a) shows the archetypal, one-dimensional mechanical
module examined in this research: a bistable spring (axially-com-
pressed rigid bars joined at a central pivot) connected in series
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with a linear spring with stiffness coefficient KL. When the mod-
ule is constrained by a static, global end displacement Z at the
free end of the linear spring, the qualitative character of the reac-
tion force F evaluated at the end will significantly vary based
upon the relative amplitude of the stiffnesses between the bistable
and linear spring constituents.

For example, the black solid curve in Fig. 1(a) shows the case
for which the linear spring is very stiff compared to the bistable
spring. Since the “weakest link” of springs in series governs the
upper bound on the effective stiffness, a macroscopic observation
taken from the end displacement is that this module is effectively
bistable, and therefore exhibits only one potential reaction force
as the global end displacement varies. As the linear spring stiff-
ness KL is reduced, a dramatic change in mechanical properties
occurs. At a critical reduction of the linear spring stiffness, a verti-
cal tangency appears in the force–displacement profile [13], such
as that shown for the dashed–dotted curve in Fig. 1(a). Thus, the
continued reduction in the linear spring stiffness leads to two co-
existent metastable states, shown by the dashed curves in Fig.
1(a). In this research, a module having multiple coexisting meta-
stable states over a given range of displacements is referred to as a
metastable module. The coexisting states are illustrated in Fig.
1(b) where for one prescribed end displacement Z0 there are two
unique static internal configurations that induce unique reaction
forces F and F0. For the mechanical system employed in this
study, the metastability range is defined as the extent of displace-
ments across which the module exhibits a coexistence of metasta-
ble states.

Based on the above arguments, integrating negative stiffness
(bistable) inclusions or devices into structural/material systems to
effect large and adaptable damping may commonly result in a sys-
tem possessing coexisting metastable states, and the unit-level
module of such a phenomenon serves as a suitable model to
explore the global features [4,12]. While such metastable modules
have been examined for their static and subresonant low
frequency dynamic properties [1–4], to date much remains to be
understood regarding the dynamics and energy dissipation charac-
teristics of metastable modules when excited near resonance, i.e.,
at frequencies close to the linearized resonances of the locally

stable states. Such scenarios are particularly important since near-
resonant excitations are substantially more influential on the acti-
vation of large amplitude snap-through dynamics in individual
bistable devices [14] and damping change has greater impact
around system resonances.

The goals of this research are to investigate the dynamic char-
acteristics of a metastable module when excited near resonance,
and to identify how the various dynamic states may be leveraged
to achieve large and adaptable energy dissipation properties at the
unit module level. The study considers an archetypal mechanical
metastable module to realize the essential components of negative
and positive stiffness members configured in series. Sections 2–7
introduce the experimental platform and corresponding one
degree-of-freedom (DOF) model of the metastable module, then
present analytical, numerical, and experimental investigations to
evaluate the effects of excitation parameters on the energy dissi-
pation properties effected via near-resonant excitation.

2 Experimental Metastable Module

The experimental system studied in this research is depicted in
Fig. 2, and represents the essential constituents required to closely
examine the dynamics of an individual metastable module. A pol-
ycarbonate base (label a) supports a suspension system consisting
of a pair of parallel, thin spring steel beams (label b) clamped at
the ends. At the center of each spring steel beam suspension is a
miniature ball bearing that serves as a mount for a rigid, rotating
arm (label c). The other ends of the arms are pinned together at a
center point between the suspensions using similar bearings in the
arms and a shared axle. The net length of the two rotating arms is
greater than the distance between the suspension system ends and
thus the subsystem is bistable. Due to the compliance provided by
the suspensions, the rigid arms may rotate between the two stable
equilibria. The configuration used throughout experimentation is
designed such that the two stable equilibria of the bistable constit-
uent are at 610 deg with respect to a line normal to the suspen-
sion beams. These prior elements represent the bistable spring of
the metastable module. A pair of linear tension springs (label d)
connects the shared axle that joins the two rotating arms to bolts
protruding from a rigid U-channel beam (label e). The tension
springs are always extended from the relaxed lengths to avoid the
possibility of spring buckling. The U-channel beam, to which the
tension springs are connected, is fixed to a controlled electrody-
namic shaker (APS Dynamics 400, label f), which is the global

Fig. 1 (a) Inset: Schematic of the mechanical module that inte-
grates bistable and liner springs in series. Reaction force, F , of
mechanical module acted upon by a global end displacement,
Z , for three linear spring stiffnesses KL. (b) For sufficiently
small linear spring stiffness, the system exhibits coexisting
metastable states evidenced by more than one reaction force
for one end displacement.

Fig. 2 Experimental metastable module and experimentation
components. The configuration used throughout experimenta-
tion is such that the two stable equilibria of the bistable constit-
uent are at h 5 610 deg.
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end displacement (excitation) for the metastable module. The
bolts connecting the U-channel to the springs may be moved to
generate a static offset to the excitation. Experiments verified that
the U-channel beam was sufficiently rigid to eliminate resonant
dynamics of the U-channel in the frequencies of interest in this
research. The energy dissipation mechanisms present in the sys-
tem are primarily the result of viscous damping in the deformation
of the springs and suspension beams, as well as the unavoidable
friction in the bearings. To monitor the excited dynamics of the
metastable module, the rotation of the rigid arms is measured
using a Hall effect sensor (Novotechnik RFC-4801, label g)
attached to the pinned axle that connects one arm to a suspension,
as shown in Fig. 2. Additionally, the input shaker acceleration is
monitored by an accelerometer (PCB 352 C33).

3 Model Formulation and Governing Equation

The experimental module shown in Fig. 2 is modeled using the
schematic of Fig. 3, and the governing equation of motion is
derived using energy principles. The mass taken into considera-
tion in this study consists only of the rigid rotating arms, while the
masses of the other components of the module relative to the arms
are assumed to be negligible. The total kinetic energy of the mod-
ule may then be derived as

T ¼ 2
1

2
Ip þM

L2

4

� �� �
_h

2
(1)

The rotation of both arms is expressed using one common angular
displacement hðtÞ, M is the mass of each rotating arm of length L,
and Ip is the moment of inertia of each rigid arm about an axis
through its center of mass, perpendicular to the plane shown in
Fig. 3. The parallel axis theorem is applied to obtain the moment
of inertia of the rigid arm about its pinned end. The potential
energy stored in the suspension beams may be written as

U1 ¼ 2
192EI

L2
s

1� h sin hð Þ � cos hð Þ þ 1

2
h2 cos h0ð Þ

� �
(2)

where E is the Young’s modulus of the suspension beam, I is the
area moment of inertia about the neutral axis of bending, Ls is the
length from clamp to clamp of each suspension, and h0 is the
angular position of the arms that results in the absence of the con-
nection to the linear springs. The term 192EI=L3

s is the effective,
one-dimensional spring stiffness of a clamped–clamped beam
with an applied load at the center point [15]. The potential energy
stored in the linear springs is

U2 ¼ KL½Z þ D� L sin ðhÞ�2 (3)

where tension spring stiffness is KL, and D refers to a static offset
of the periodic excitation Z from the neutral position of the bista-
ble device. In other words, a nonzero offset D biases the system
toward one of the two potential wells. The offset is adjusted
experimentally by changing the pretension on one of the linear
springs. Dissipation is approximated by a viscous damping force
proportional to the angular velocity of the rigid, rotating arms

according to the coefficient B, whose value is determined by fit-
ting numerical results to experimentally measured data of the free
decay response. Lagrange’s equations are used to yield the gov-
erning equation of motion for the rigid arm rotation h in conse-
quence to certain end displacement motions Z.

ML2

2
þ 2Ip

� �
€h þ B _h þ 2KLL2 sin hð Þcos hð Þ

� 384EI

L2
s

h cos hð Þ � cos h0ð Þ
� �

� 2KLL Z þ Dð Þ cos hð Þ ¼ 0

(4)

In this study, the global energy dissipation of the metastable mod-
ule due to harmonic excitations of the end displacement,
ZðtÞ ¼ Z0 cos Xt, is quantified by computing the area enclosed in
the hysteresis loops of reaction force and end displacement. The
reaction force due to the deflection of the linear springs is defined
in Eq. (5). In addition to the apparent spring force contribution,
the reaction force also reflects inertial and energy dissipation phe-
nomena due to the influences of the rotations h of the internal
moving arms.

FðtÞ ¼ 2KL½Z þ D� L sin ðhÞ� (5)

4 Model Transformation and Equivalent Governing

Equation

Equation (4) may be directly integrated via numerical methods
to predict the response and energy dissipation properties due to a
particular selection of design and excitation parameters for the
metastable module. On the other hand, to obtain more comprehen-
sive insights on the potential dynamic behaviors, an approximate
analytical strategy to solve the governing equation (4) is under-
taken in this study. As a first step toward application of an approx-
imate solution, the restoring forces in Eq. (4) are expanded via a
Taylor series around h ¼ 0, retaining terms up to the third-order.

ML2

2
þ 2Ip

� �
€h þ B _h � 384EI

L2
s

1� cos h0ð Þ½ �hþ KLL Z þ Dð Þ½ �h2

þ � 4

3
KLL2 þ 192EI

L2
s

� �
h3 � 2KLL Z þ D� Lhð Þ ¼ 0

(6)

By performing a coordinate transformation around a stable angu-
lar equilibrium h0 of the internal bistable element when discon-
nected from the linear spring [16], and by applying the arc length
relationship (x ¼ Lh) to relate the displacement of the center axle
joining the rigid arms x to the angular rotation of the arms h, the
following governing equation may be obtained:

m€x þ b _x þ k1xþ k2x2 þ k3x3 � kLðzþ d � xÞ ¼ 0 (7)

where m is the lumped internal mass, and k1, k2, and k3 are the lin-
ear, quadratic, and cubic stiffness coefficients, respectively.
Figure 4 shows a schematic representation of the metastable

Fig. 3 Schematic of the experimental metastable module
Fig. 4 Schematic of the transformed model formulation of the
metastable module
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module using the parameters expressed in Eq. (7). With the restor-
ing forces of the module approximated by the power series in
terms of the displacement x, the governing equation (7) may be
approximately solved using a variety of assumed solution techni-
ques to predict the steady-state behaviors [17].

4.1 Approximate Solution to the Transformed Model. In
this study, the solution to Eq. (7) is approximated using a funda-
mental Fourier series expansion

xðtÞ ¼ f ðtÞ þ gðtÞsin ðxtÞ þ hðtÞcos ðxtÞ (8)

where the coefficients f , g, and h are assumed to slowly vary in time
with respect to the primary period of oscillation. The excitation z
considered here is a harmonic in frequency x and amplitude z0

zðtÞ ¼ z0 cosðxtÞ (9)

Substituting Eqs. (8) and (9) into Eq. (7), assuming slowly varying
harmonic coefficients such that €f ðtÞ ¼ €gðtÞ ¼ €hðtÞ ¼ 0, and retain-
ing only those harmonic terms proportional to the assumed solution
expansion, the following equations are obtained via balancing the
coefficients of the constant, sine, and cosine terms, respectively.

�b _f ¼ k1f þ k2f 2 þ k2

2
r2 þ k3

3

2
fr2 þ f 3

� �
þ kL f � dð Þ (10a)

2mx _h � b _g ¼ k1gþ 2k2gf þ k3

3

4
gr2 þ 3gf 2

� �
þ kLg� mgx2

� bhx (10b)

�2mx _g � b _h ¼ k1hþ 2k2hf þ k3

3

4
hr2 þ 3hf 2

� �
þ kLh� kLz0

� mhx2 þ bgx (10c)

The amplitude of the motion of x is expressed by r ¼ ½g2 þ h2�1=2
.

Assuming steady-state response, which implies that
_f ðtÞ ¼ _gðtÞ ¼ _hðtÞ ¼ 0, Eqs. (10a)–(10c) are combined to yield a
system of two equations for r and f , representing response ampli-
tude and offset, respectively.

k3f 3 þ k2f 2 þ k1 þ kL þ
3

2
k3r2

� �
f þ 1

2
k2r2 � dkL ¼ 0 (11a)

9

16
k3r6 þ 3

2
k3 �mx2 þ k1 þ kL þ 3k3f 2 þ 2k2f
� 	

r4

þ �mx2 þ k1 þ kL þ 3k3f 2 þ 2k2f
� 	2 þ b2x2

h i
r2

� k2
Lz2

0 ¼ 0 (11b)

Equations (11a) and (11b) are nonlinearly coupled and must be
solved numerically, although the solutions are an analytical
approximation to the steady-state dynamics of the metastable
module. The solutions must then be evaluated for stability. From
Eq. (10), the response coefficients may be expressed using

g ¼ � bkLz0x

C2 þ b2x2
(12a)

h ¼ � kLz0

C2 þ b2x2
(12b)

where

C ¼ k1 þ 2k2f � mx2 þ k3 3f 2 þ 3

4
r2

� �
þ kL (13)

Equation (10) is then expressed in a conventional form using
x ¼ ½f ; g; h�T

Q _x ¼ PðxÞ (14)

where Q and P are determined by consideration of Eq. (10). Then,
linearizing the system around one of the fixed points x� ¼
½f ; g; h�T obtained from solving Eqs. (11) and (12), the stability of
the fixed point is found by evaluating the eigenvalues of the Jaco-
bian matrix of the linearized system, where the Jacobian is
J ¼ DxðQ�1PðxÞÞx� . The fixed point solution is stable if all eigen-
values of the Jacobian have negative real parts.

In this study, steady-state results of the amplitude r are qualita-
tively compared to the experimentally measured results of angular
rotation magnitude jhj. Only the stable results of the analytically
approximated amplitude r are presented. Additionally, for a quan-
titatively meaningful comparison, Eq. (4) is numerically inte-
grated, and the dynamic reaction force FðtÞ from Eq. (5) is
compared to the corresponding measured result conducted using
common system parameters.

5 Excitation Frequency Influence on Energy

Dissipation

It is well known that structures containing buckled members
may more readily exhibit strongly nonlinear dynamics when
excited near resonance [14] and this feature has indeed been
exploited to achieve high and adaptable damping using an individ-
ual bistable oscillator [6]. But the ways in which such an excita-
tion comparably influences the dynamics of metastable modules,
like the one studied here with bistable-linear spring integrations,
remain poorly understood.

To investigate the frequency dependence of the near-resonant
harmonic excitation, experimental excitation frequency sweeps
are performed at fixed amplitude using very slow sweep rates of
6 0.05 Hz/s to ensure that steady-state responses are correctly
identified and that all potential dynamic states are realized by
sweeping both up and down in frequency. First, the examinations
consider the case in which the offset parameter D is set such that
the mean value of the harmonic excitation corresponds to the cen-
tral unstable equilibrium position of the internal bistable device of
the metastable module. For the offset D satisfying the condition
described above, the linear spring stiffness KL is selected such
that the module exhibits coexistent metastable states. Experimen-
tal and analytical model parameters are presented in Tables 1 and
2, respectively. Analytical model parameters are chosen to facili-
tate a qualitative comparison between the experimental measure-
ments and analytical model predictions. At this phase of research
development, the aim of the analytical model is to demonstrate an
ability to predict the overall characteristics of the strongly nonlin-
ear experimental system dynamics as excitation parameters are
varied. Once the analytical model is verified qualitatively, future
efforts will pursue quantitative validations of the results using
appropriate nondimensional parameters derived from a transfor-
mation of Eq. (6) to Eq. (7).

Figure 5 presents (a) experimental and (b) analytical results of
the rigid arm rotation and displacement amplitudes, respectively.

Table 1 Experimental system parameters used in numerical
simulations

M (g) IP (kg/m2) L (cm) E (GPa) I (m4)
12 1.05 5.08 180 5.46� 10�15

Ls (cm) h0 (deg) KL (N�m�1) B (N�s�m�1)
10.02 610 84 1.5� 10�4

Table 2 Analytical model parameters

m (kg) k1 (N�m�1) k2 (N�m�2) k3 (N�m�3) kL (N�m�1) b (N�s�m�1)

1 2 �3 1 0.5 0.05
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In the experiments, the harmonic excitation frequency varies from
5 to 25 Hz with a constant excitation amplitude Z0 ¼ 300 lm.
Statically stable equilibria of the bistable constituent of the experi-
mental module are at angular positions 610 deg. The transformed
analytical model, Eq. (7), is evaluated between normalized fre-
quencies of 0.2 Hz and 1.2 Hz, with excitation amplitude z0

¼ 0.1 m. Both the experimental and analytical results reveal two
distinct dynamic regimes: intrawell and interwell. Intrawell
responses oscillate around a statically stable equilibrium. As
described using the illustration of Fig. 1, for some configurations
of the module, the system possesses two local wells of potential
energy such that it exhibits coexistence of metastable states for a
prescribed end displacement Z. For clarity, these two local wells
are referred to throughout the rest of this study as well #1 and well
#2, and intrawell responses observed in these potential wells are
labeled in all figures as intrawell #1, and intrawell #2, respec-
tively. Interwell (i.e., snap-through) responses are characterized
by displacements which cross the unstable equilibrium of the in-
ternal bistable constituent. These response behaviors are exhibited
by individual bistable oscillators [18], and are observed here due
to the internal bistable element within the metastable module and
the corresponding module design and excitation parameters. For
the excitation offset D ¼ 0 mm, the metastable module displays
two statically stable equilibria. Since the excitation amplitude Z0

is sufficiently small, two distinct intrawell-type dynamics are acti-
vated, as shown in Fig. 5(a) by the dashed and dashed–dotted
curves. This is a unique coexistence of dynamics not manifest in
an individual, displacement-driven bistable device. For certain
excitation frequencies, namely those close to 15 Hz, two different
intrawell responses are observed for each of the intrawell-type
behaviors: low and high amplitude intrawell. In particular, these

two responses are realized due to the near-resonant excitation fre-
quencies. The continuous snap-through oscillations, shown by a
solid line in Fig. 5(a), are observed at excitation frequencies
between 8 Hz and 14 Hz, with much greater response amplitudes
than either of the intrawell oscillations. Due to the differences in
the angular rotation amplitudes among each dynamic type across
the near-resonant frequencies explored here, the kinetic energies
of the dynamic regimes are distinct. Because the metastable mod-
ule possesses internal damping mechanisms, a wide variation of
energy dissipation capabilities is correspondingly achieved, and is
shown to be governed by the harmonic excitation frequency in
this case.

The excitation offset position D ¼ 0 mm is presumed to be cen-
tered on the unstable equilibrium of the internal bistable element.
Hence, an ideal, symmetric, module should exhibit identical intra-
well responses. Yet, the different response amplitudes, particu-
larly for the high amplitude intrawell responses found at
frequencies greater than 15 Hz, indicate that the experimental
metastable module is slightly asymmetric. Note that due to the
coordinate transformation performed to reduce Eq. (6) to the
equivalent form presented in Eq. (7) and according to the trans-
formed model parameters employed (Table 2), the symmetric off-
set position for the analytical model is d ¼ 1 m. To reflect the
small asymmetry in the analytical model for qualitative compari-
son purposes, a static offset of d ¼ 1.06 m is included in the calcu-
lation of the analytical results presented in Fig. 5(b). Recall that
the transformed analytical model parameters are selected with the
intention of facilitating a qualitative comparison to experimental
results at this phase of the research. In spite of the limitations of
the current analytical model parameter selections, the predictions
shown in Fig. 5 exemplify good qualitative agreement with the
corresponding measurements, revealing distinct low and high am-
plitude intrawell responses in both potential wells, as well as the
higher amplitude snap-through oscillations at low excitation fre-
quencies. This good agreement verifies that the model transforma-
tions from the exact formulation in Eq. (4) to the form in Eq. (7)
enable a meaningful prediction of the unique dynamic behaviors
of the metastable module, and provide a computationally efficient
means to analytically predict the steady-state dynamics near reso-
nance. Based on the current results obtained, the derivation of the
exact transformed system parameters from Eq. (6) to Eq. (7) may
enable a quantitative comparison between the experimental and
analytical findings during future studies of this research.

The activation of numerous distinct dynamic responses from
the near-resonant excitations suggests that the energy dissipation
characteristics are also distinct. To quantify the energy dissipated
over one excitation period, the reaction force F as defined in
Eq. (5) is plotted against global end displacement Z over one
excitation period. Using W ¼

Ð
F � dZ, the work W done by the

reaction force may be calculated over one period of excitation.
Since the excitation and response are periodic, the
force–displacement trajectory forms a loop. The area enclosed by
this loop, resulting from damping-induced hysteresis, is the work
done by the reaction force and is equal to the energy dissipated by
the module over a single excitation period [19].

The solid curves in Fig. 6(a) present the hysteresis loops of a
snap-through response obtained from the experimental time-series
data using an excitation frequency of 12.5 Hz, and both intrawell
responses observed at an excitation frequency of 22 Hz, all using
an offset of D ¼ 0 mm. These excitation conditions correspond to
the angular rotation amplitude data point in Fig. 5(a) indicated by
the triangle for the snap-through response, and the multiplication
and addition symbols for the intrawell #1 and intrawell #2
responses, respectively. The solid curves in Fig. 6(b) show the
corresponding simulation results obtained by numerically inte-
grating Eq. (4) which is the governing equation of motion for the
experimental system. The plots also show dashed curves which
are the corresponding static force–displacement profiles. The
static profiles are determined by solving Eq. (6) under static con-
ditions and for a fixed global end displacement Z. Similar to the

Fig. 5 (a) Experimentally measured angular rotation amplitude
of the rigid arms and (b) analytical predictions of the displace-
ment amplitude as the excitation frequency is varied. In (a),
three data points are provided as reference to results shown in
Fig. 6.
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dashed curve in Fig. 1(a), the static force–displacement character-
istics for the metastable module studied here demonstrate a range
of global end displacements for which two metastable states
occur. The snap-through result of Fig. 6(b) demonstrates good
agreement with the experimental result in Fig. 6(a), and shows
large reaction force amplitudes having a mean value over the loop
which is approximately zero. This suggests that the dynamic reac-
tion force behavior is associated with snap-through since there is
no force bias typical of intrawell oscillations. In fact, examina-
tions of the experimental and simulated time-series data (not
shown here) confirm that the dynamic responses are correctly
identified as snap-through, since the rotating arms oscillate across
the central, unstable equilibrium twice per excitation period. Fur-
thermore, the snap-through hysteresis loops display a negative
mean slope, indicating the manifestation of negative dynamic
stiffness in this regime [19]. The large displacement amplitude of
the internal coordinate in the snap-through regime corresponds to
large deflections of the linear springs. Due to the more significant
internal deformations and the damping present in the module, a
large dissipation of energy is achieved for relatively small excita-
tion amplitudes of the global end displacement.

It is clearly seen that each of the intrawell responses in Fig. 6 is
confined to a single potential well around a static equilibrium,
resulting in a smaller hysteresis loop and consequently much
lower energy dissipation per excitation cycle than the snap-
through case. The per-cycle energy dissipation predicted by simu-
lation for the intrawell cases in Fig. 6(b) is 15.2 lJ, which is much
lower than the 54.9 lJ and 61.2 lJ of energy dissipated in the
experimental system. This could be due to the unmodeled
stick–slip friction in the bearings of the experimental metastable
module, which have the effect of increasing damping for low-
amplitude oscillations. Thus, there is greater deviation in the

values of the area enclosed in the hysteresis loops between the
measurements and simulations for the small amplitude intrawell
dynamics than for the corresponding measures for the large ampli-
tude snap-through responses.

As seen in Fig. 5, excitation frequency is one factor that deter-
mines whether intrawell or snap-through responses are activated.
Small changes in frequency may maintain a given response type
although the response amplitude and phase may smoothly vary.
Consider Fig. 7 which shows experimental and simulated hystere-
sis loops of snap-through responses as the excitation frequency is
varied from 10 Hz to 14 Hz. The area enclosed by the loops, and
consequently the energy dissipated per excitation cycle, increases
with the increase in frequency. This finding is consistent with
results presented in Fig. 5(a), which show snap-through response
amplitudes increasing with frequency. As the arm rotation angle
amplitude increases, the deflection of the linear springs likewise
grows in magnitude; consequently, the reaction force amplitude
also increases according to Eq. (5). This results in the steady mag-
nification of the hysteresis loops as the frequency increases from
10 to 14 Hz in Fig. 7. Similar to the results of Fig. 6, good overall
agreement is seen comparing the experimental results in Fig. 7(a)
of the snap-through dynamics with the behaviors predicted from
the direct simulations of the model governing equations as shown
in Fig. 7(b).

The results suggest that energy dissipation performance is
affected by excitation frequency in the following two ways. First,
the excitation frequency influences which dynamic response
regimes are realizable. Intrawell and snap-through responses
induce particularly different hysteresis loops due to the much
larger amplitudes of arm rotation triggered by the snap-through
behaviors. Thus, large adaptation of energy dissipation (orders of
magnitude) may be accomplished. Second, small changes in exci-
tation frequency that maintain a particular response regime may
have a lesser, but still appreciable, effect on the energy dissipated

Fig. 6 (a) Experimental and (b) simulated hysteresis loops
(solid curve) of a snap-through response at 12.5 Hz excitation,
and an intrawell response at 22 Hz excitation with 0 mm offset.
Symbols in the legend of (a) correspond to the respective con-
ditions from Fig. 5(a).

Fig. 7 (a) Experimental and (b) simulated hysteresis loops
(solid curves) of snap-through response at 0 mm offset at differ-
ent excitation frequencies
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per cycle. In this way, a refined modulation of the energy dissipa-
tion may be induced.

6 Excitation Level Influence on Energy Dissipation

Excitation level is shown to have a strong influence on the
dynamic behavior of bistable oscillators [6,20] and is expected to
exert similarly strong influence on the metastable module which
contains a bistable element. To study the influences, several exci-
tation amplitude sweeps are performed at fixed excitation frequen-
cies. Figure 8(a) presents the experimental results of an excitation
amplitude sweep from 0 to 450 lm at a rate of 2.25 lm/s, with
constant excitation frequency X=2p ¼ 17 Hz. Figure 8(b) shows
analytical model results, computed using an excitation frequency
x=2p ¼ 5.03 Hz and with the model parameters given in Table 2.
Similar to the good agreement seen in Fig. 5, the comparisons in
Fig. 8 indicate that the analytical model provides a meaningful

prediction of the qualitative behaviors observed experimentally
when the excitation amplitude is varied while the excitation fre-
quency remains constant. Both the experimental and analytical
results show the presence of low amplitude intrawell oscillations
only at low excitation levels, and a range for which low and high
amplitude intrawell responses coexist. Snap-through responses are
observed at high excitation amplitudes. The high amplitude intra-
well and the snap-through regimes show fairly constant response
amplitudes over a large range of excitation amplitudes, indicating
robustness to changes in excitation level.

Figure 8 indicates that the existence or coexistence of dynamic
response regimes is strongly influenced by excitation amplitude.
To demonstrate how these trends correspond to energy dissipation
performance, Figs. 9(a), 9(b), and 9(c) show hysteresis loops at
200 lm, 300 lm, and 450 lm excitation amplitudes, respectively,
for a fixed 17 Hz excitation frequency, and offset D ¼ 0 mm. It is
observed that as excitation amplitude is increased, the amount of
energy dissipated in a particular response regime is slightly
increased, consistent with the results presented in Fig. 8(a).

Thus, the excitation amplitude influences the energy dissipation
characteristics in ways comparable to excitation frequency. First,
excitation amplitude affects the dynamic response regimes that
are realizable, where each regime results in different energy dissi-
pation. At very low excitation levels, only low amplitude intrawell
responses are observed. As excitation level increases, the low am-
plitude intrawell responses vanish while high amplitude intrawell
and snap-through responses are activated. Second, increased exci-
tation amplitude increases the amount of energy dissipated per ex-
citation cycle for a fixed response regime. This is a desirable
characteristic in practice, where greater excitation levels typically
call for increased damping and energy dissipation performance.

7 Offset Influence on Energy Dissipation

Thus far, the studies have focused on excitations that are ideally
symmetric about the unstable equilibrium position of the internal
bistable element of the metastable module. Yet, once the excita-
tion is applied with an offset from the symmetric condition, asym-
metry may appear in the dynamic response, since the bistable
constituent of the metastable module is under an additional static
force (KLD). In practice, such a load may be representative of a
mass supported by the module under gravitational body forces.

The influences upon the steady-state dynamics of the module
due to a static offset D that modulates the symmetry of the system
are examined in Figs. 10 and 11 for a fixed excitation amplitude
of Z0 ¼ 300 lm in the experiments and z0 ¼ 0.1 m in the analyti-
cal model. Figure 10(a) presents experimental results where the
excitation offset D is 0.7 mm deflected from the neutral position,
while Fig. 10(b) shows qualitatively similar analytical results for
the offset of d ¼ 1.2 m. The offset biases the metastable module
toward well #1; the dynamics of this state are shown using dashed
curves and diamonds in Figs. 10(a) and 10(b), respectively. The
asymmetry results in a greater bandwidth of frequencies for which

Fig. 8 (a) Experimental and (b) analytical results of the influ-
ence of excitation amplitude on the internal dynamics of the
metastable module when excited at constant frequency

Fig. 9 Experimental hysteresis loops (solid curves) at D 5 0 mm offset, 17 Hz excitation frequency, and (a) 200 lm, (b) 300 lm,
and (c) 450 lm excitation amplitude. Response type and area enclosed by each loop are indicated.
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the steady-state intrawell responses occur when the internal mass
is confined to well #1, whereas the frequency range of existence
for motions in well #2 is greatly diminished (dashed–dotted
curves and squares in Figs. 10(a) and 10(b), respectively). Quali-
tatively, the change in offset plays a key role in tailoring the local
linearized resonant frequencies of the intrawell behaviors, and
thus governs the frequency bandwidths across which each set of
low and high amplitude intrawell dynamics may occur. As a
result, the energy dissipation characteristics of these regimes are
strongly controlled via offset modulation.

Additionally, in comparing the experimental and analytical
results from Fig. 5 to those in Fig. 10, the frequency bandwidth
for which snap-through motions are observed is modulated. In
other words, the offset has the effect of tailoring the bandwidth of
frequencies for which the large dissipation capability of the snap-
through dynamics is realized. The asymmetry introduced by the
static offset also results in intrawell #1 and #2 responses exhibit-
ing notably different response amplitudes for the same excitation
frequency. Collectively, the results show that application of an
offset to the harmonic excitation of the metastable module leads
to a versatile range of energy dissipation performance according
to the operating frequency and amplitude of the induced dynamics
of the internal bistable element.

When the offset is further increased to D ¼ 1.4 mm in the
experiment, as shown in Fig. 11(a), well #2 is no longer statically
stable, and no steady-state intrawell responses are found in well
#2 at any frequency. Analytical results in Fig. 11(b) with an offset
of d ¼ 1.3 m demonstrate comparable behavior. Compared to Fig.
10, the size of the frequency bandwidth for which the same type
of intrawell responses in well #1 exist is further increased. How-
ever, the absence of stable intrawell responses in well #2 means
that fewer frequencies exhibit multiple coexistent responses

regimes, compromising some energy dissipation adaptability.
Considering the snap-through responses from Figs. 5 to 10 to 11,
it is apparent that change in the excitation offset from a near-
symmetric excitation condition has the effect of modulating the
bandwidth of frequencies for which the snap-through motions
occur. In particular, an increase of the offset increases the lower
and upper frequency extents of the bandwidth although the total
bandwidth is seen to remain relatively constant. This finding sug-
gests that a novel bandpass filter feature may be realized for the
metastable module in terms of triggering large damping associated
with the snap-through behaviors for a particular range of excita-
tion frequencies.

While the introduction of a nonzero static offset to the excita-
tion affects the frequency ranges in which the different response
regimes are observed, certain excitation frequencies exhibit the
same response regime at all three offsets D ¼ 0 mm, 0.7 mm, and
1.4 mm, permitting an analysis of the impact of offset on energy
dissipation performance. To examine one example, Fig. 12
presents measured hysteresis loops for snap-through responses
when excited at 14 Hz. As the offset is increased (shown by the
increasing lightness of the solid curves), the centers of the hystere-
sis loops move toward the statically stable well, although the
amount of energy dissipated per cycle varies only slightly. This
indicates that the energy dissipation performance in the snap-
through regime is robust to small changes in excitation offset.
This result is useful for applications in which high energy dissipa-
tion is desired but equivalent offset influences vary over time,
such as change in applied dead loads or supported weights.

As evidenced by the frequency sweep results presented in
Figs. 10 and 11, excitation offset may affect which response
regimes are physically realizable. The experimental results in Fig.
10(a) suggest that low and high amplitude intrawell and snap-
through responses may be observed for excitation frequencies

Fig. 10 (a) Experimental and (b) analytical results showing the
internal dynamics of the metastable module as excitation fre-
quency is varied, while the excitation amplitude and offset
remain fixed

Fig. 11 (a) Experimental and (b) analytical results showing the
internal dynamics of the metastable module as excitation fre-
quency is varied, while the excitation amplitude and offset
remain fixed. A greater offset is used than that employed for the
results shown in Fig. 10.
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between about 14 Hz and 17 Hz with an offset D ¼ 0.7 mm.
Figure 13 presents hysteresis loops for the three coexistent
responses at 16 Hz excitation frequency. There is a 44 times dif-
ference in energy dissipation from the low amplitude intrawell to
the snap-through responses, while the high amplitude intrawell
dynamics provide an intermediate level to bridge the extremes.
This exemplifies the significant adaptation of energy dissipation
enabled by the metastable module for fixed excitation parameters
by switching among the various dynamic states, for example via
strategic perturbations or different initial conditions. In fact, with
appropriate design the module may exhibit five coexistent
dynamic responses: low and high amplitude intrawell oscillations
in each potential well, along with snap-through.

8 Conclusion

This paper explores the unique dynamic and energy dissipation
characteristics of a metastable module excited at frequencies near
resonance. An archetypal metastable module, representing a fun-
damental unit for the integration of negative stiffness bistable ele-
ments within an overall structural system, is designed, fabricated,
and modeled. Although the module contains a bistable constituent,
the static and dynamic properties of the metastable module are
significantly distinct when compared to the properties of an indi-
vidual bistable element. The prescribed amplitude and frequency

of harmonic global end displacement excitations on the metasta-
ble module are found to affect the existence or coexistence of mul-
tiple dynamic regimes that display an order of magnitude of
difference in energy dissipation amongst them. Tailoring the displace-
ment offset presents another method to modify energy dissipation
characteristics, due to asymmetric static mechanical properties that
govern the realization of particular dynamic energy dissipation
regimes. These characteristics may be used to develop vibration
damping devices having large and adaptable energy dissipation prop-
erties for applications with diverse and demanding performance
needs.
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