98 research outputs found

    The effect of motion adaptation on the position of elements in the visual saltation illusion.

    Get PDF
    The visual saltation illusionVillusory motion induced by presenting elements first to one peripheral location, then to another, in rapid and regular successionVbelongs to a class of stimuli for which a difference exists between the physical and perceived positions of elements. Rather than being perceived at their physical location, elements are perceived as traveling smoothly across the area between the two locations. In separate experiments, we examined the distortion to the saltatory path caused by adaptation to an upward drifting grating presented between the two physically stimulated locations (where elements were nonetheless perceived), and at the first location of physical stimulation. Where adaptation occurred between the two sites of physical stimulation, the saltatory path was distorted as if elements had a physical origin at that location; elements perceived as arising from the central location were subject to a motion aftereffect (MAE). Where motion adaptation overlapped the first site of physical stimulation, the saltatory path was affected only for those elements perceived as arising from the first location; elements perceived at the central location (but physically presented at the first site of stimulation) were not subject to an MAE. Our results indicate that the impact of motion adaptation on position is dependent on the perceived, and not the physical, location of elements

    Protein–Protein Interaction Network and Subcellular Localization of the Arabidopsis Thaliana ESCRT Machinery

    Get PDF
    The endosomal sorting complex required for transport (ESCRT) consists of several multi-protein subcomplexes which assemble sequentially at the endosomal surface and function in multivesicular body (MVB) biogenesis. While ESCRT has been relatively well characterized in yeasts and mammals, comparably little is known about ESCRT in plants. Here we explored the yeast two-hybrid protein interaction network and subcellular localization of the Arabidopsis thaliana ESCRT machinery. We show that the Arabidopsis ESCRT interactome possesses a number of protein–protein interactions that are either conserved in yeasts and mammals or distinct to plants. We show also that most of the Arabidopsis ESCRT proteins examined at least partially localize to MVBs in plant cells when ectopically expressed on their own or co-expressed with other interacting ESCRT proteins, and some also induce abnormal MVB phenotypes, consistent with their proposed functional role(s) as part of the ESCRT machinery in Arabidopsis. Overall, our results help define the plant ESCRT machinery by highlighting both conserved and unique features when compared to ESCRT in other evolutionarily diverse organisms, providing a foundation for further exploration of ESCRT in plants

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Choriocarcinoma in a 73-year-old woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Choriocarcinoma is a highly malignant tumor of trophoblastic origin. Most cases present within one year of the antecedent pregnancy (molar or non-molar). However, very rarely, choriocarcinoma can develop from germ cells or from dedifferentiation of endometrial carcinoma into choriocarcinoma. This article concerns a case of choriocarcinoma developing 38 years after the patient's last pregnancy and 23 years after menopause.</p> <p>Case presentation</p> <p>A 73-year-old African-American woman presented with a three-week history of vaginal bleeding. A vaginal mass was seen on pelvic examination. Ultrasonography showed a thickened complex endometrial echo. Her ÎČ-human chorionic gonadotrophin level was found to be elevated (2,704,040 mIU/mL). Vaginal and uterine biopsies were suggestive of choriocarcinoma. Immunohistochemistry tests were positive for ÎČ-human chorionic gonadotrophin as well as cytokeratin and negative for octamer binding transcription factor 3/4 and α-fetoprotein, supporting the diagnosis of choriocarcinoma. A combination of etoposide, methotrexate, and dactinomycin, followed by cyclophosphamide and vincristine (the so-called EMA/CO regimen) was initiated. After seven cycles of chemotherapy, her ÎČ-human chorionic gonadotrophin level dropped below 5 mIU/mL. Our patient is being followed up at our oncology institute.</p> <p>Conclusions</p> <p>We report an extremely rare case of choriocarcinoma arising 23 years after menopause. A postmenopausal woman presenting with vaginal bleed from a mass and ÎČ-human chorionic gonadotrophin elevation should be evaluated by immunohistochemical analysis to rule out the possibilities of a germ cell origin of the tumor or dedifferentiation of an epithelial tumor. Absence of octamer binding transcription factor 3/4, α-fetoprotein and CD-30 staining helps in exclusion of most germ cell tumors. DNA polymorphism studies can be used to differentiate between gestational and non-gestational tumor origin. These require fresh tissue samples and are time consuming. Finally, the effective first-line therapy for ÎČ-human chorionic gonadotrophin-producing high-risk gestational as well as non-gestational trophoblastic tumors is combination chemotherapy (the EMA/CO regimen). Therefore, treatment should be commenced when a potential diagnosis of metastatic trophoblastic tumor is being considered.</p

    Context and Crowding in Perceptual Learning on a Peripheral Contrast Discrimination Task: Context-Specificity in Contrast Learning

    Get PDF
    Perceptual learning is an improvement in sensitivity due to practice on a sensory task and is generally specific to the trained stimuli and/or tasks. The present study investigated the effect of stimulus configuration and crowding on perceptual learning in contrast discrimination in peripheral vision, and the effect of perceptual training on crowding in this task. 29 normally-sighted observers were trained to discriminate Gabor stimuli presented at 9° eccentricity with either identical or orthogonally oriented flankers with respect to the target (ISO and CROSS, respectively), or on an isolated target (CONTROL). Contrast discrimination thresholds were measured at various eccentricities and target-flanker separations before and after training in order to determine any learning transfer to untrained stimulus parameters. Perceptual learning was observed in all three training stimuli; however, greater improvement was obtained with training on ISO-oriented stimuli compared to CROSS-oriented and unflanked stimuli. This learning did not transfer to untrained stimulus configurations, eccentricities or target-flanker separations. A characteristic crowding effect was observed increasing with viewing eccentricity and decreasing with target-flanker separation before and after training in both configurations. The magnitude of crowding was reduced only at the trained eccentricity and target-flanker separation; therefore, learning for contrast discrimination and for crowding in the present study was configuration and location specific. Our findings suggest that stimulus configuration plays an important role in the magnitude of perceptual learning in contrast discrimination and suggest context-specificity in learning

    TFEB regulates murine liver cell fate during development and regeneration

    Get PDF
    It is well established that pluripotent stem cells in fetal and postnatal liver (LPCs) can differentiate into both hepatocytes and cholangiocytes. However, the signaling pathways implicated in the differentiation of LPCs are still incompletely understood. Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy, is known to be involved in osteoblast and myeloid differentiation, but its role in lineage commitment in the liver has not been investigated. Here we show that during development and upon regeneration TFEB drives the differentiation status of murine LPCs into the progenitor/cholangiocyte lineage while inhibiting hepatocyte differentiation. Genetic interaction studies show that Sox9, a marker of precursor and biliary cells, is a direct transcriptional target of TFEB and a primary mediator of its effects on liver cell fate. In summary, our findings identify an unexplored pathway that controls liver cell lineage commitment and whose dysregulation may play a role in biliary cancer

    The role of inflammation in epilepsy.

    Get PDF
    Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of epilepsy, relatively little is known about the processes leading to the generation of individual seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in our knowledge hamper the development of better preventive treatments and cures for the approximately 30% of epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing body of evidence that supports the involvement of inflammatory mediators-released by brain cells and peripheral immune cells-in both the origin of individual seizures and the epileptogenic process. We first describe aspects of brain inflammation and immunity, before exploring the evidence from clinical and experimental studies for a relationship between inflammation and epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related neuronal death. Further insight into the complex role of inflammation in the generation and exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs, which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease pathogenesis
    • 

    corecore