9 research outputs found

    Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

    Get PDF
    Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level

    Groundwater protection under water scarcity; from regional risk assessment to local wastewater treatment solutions in Jordan

    Get PDF
    The infiltration of untreated wastewater into aquifers highly endangers the availability of fresh-water for human consumption in semi-arid areas. This growing problem of potable water scarcity urgently requires solutions for groundwater protection. Decision support systems for local wastewater treatments in settlements already exist. However, the main challenge of implementing these for regional groundwater protection is to identify where wastewater treatments are most efficient for the whole region. In this paper, we addressed this scale-crossing problem with an interdisciplinary approach that combines regional risk assessment and assessment of local wastewater treatment scenarios. We analysed the impact of polluting the groundwater using vulnerability, hazard, and risk assessments. Thus, we identified the need for semi-arid and karst-related adjustments, defined more suitable standards for wastewater hazard values, and accounted for the groundwater dynamics beyond the vertical flow paths. Using a lateral groundwater flow model, we analysed the impact of the pollution sources and linked the regional and local scale successfully. Furthermore, we combined the geoscientific results with the urban water engineering methods of area and cost assessments for local wastewater scenarios. Based on the example of the Wadi al Arab aquifer in Jordan, we showed that implementing an adapted treatment solution in one of the heavily polluted suburban settlements could reduce 12% of the aquifer pollution, which affects 93% of the potential aquifer users. This novel method helps to identify settlements with significant pollution impact on the groundwater, as well as the users, and also gives specific guidelines to establish the most efficient locally tailored treatment solution

    Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

    No full text
    Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level

    Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

    No full text
    Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level

    Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

    No full text
    Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level

    Management of Urban Stormwater at Block-Level (MUST-B): A New Approach for Potential Analysis of Decentralized Stormwater Management Systems

    No full text
    Cities worldwide are facing problems to mitigate the impact of urban stormwater runoff caused by the increasing occurrence of heavy rainfall events and urban re-densification. This study presents a new approach for estimating the potential of the Management of Urban STormwater at Block-level (MUST-B) by decentralized blue-green infrastructures here called low-impact developments (LIDs) for already existing urban environments. The MUST-B method was applied to a study area in the northern part of the City of Leipzig, Germany. The Study areas was divided into blocks smallest functional units and considering two different soil permeability and three different rainfall events, seven scenarios have been developed: current situation, surface infiltration, swale infiltration, trench infiltration, trough-trench infiltration, and three different combinations of extensive roof greening, trough-trench infiltration, and shaft infiltration. The LIDs have been simulated and their maximum retention/infiltration potential and the required area have been estimated together with a cost calculation. The results showed that even stormwater of a 100 year rainfall event can be fully retained and infiltrated within the blocks on a soil with low permeability (kf = 10−6 m/s). The cost and the required area for the LIDs differed depending on the scenario and responded to the soil permeability and rainfall events. It is shown that the MUST-B method allows a simple down- and up-scaling process for different urban settings and facilitates decision making for implementing decentralized blue-green-infrastructure that retain, store, and infiltrate stormwater at block level

    Wastewater Treatment and Wood Production of Willow System in Cold Climate

    No full text
    This article studied how wastewater treatment performance of a short rotation forestry system was influenced by the seasonal operational changes under the extreme Mongolian winter conditions. For this reason, two beds planted with Willow (Salix spec.) and Poplar (Populus spec.) trees were operated over a period of two years under two different seasonal conditions: (A) “external winter storage” and (B) “internal winter storage” of pretreated wastewater. For operational condition A, the tree-bed was loaded with wastewater for only 4 summer months. For this operational condition it was considered that the treatment bed was fed with primary treated wastewater, which was stored in a sealed pond during the remaining 8 months. The other Bed B was irrigated throughout the year (12 months) with the same daily loading rate. In winter, the wastewater accumulated as ice in the tree-bed. Bed A, with external winter storage, showed mass removal percentage up to 95%, while the bed with internal winter storage showed mass removal rates up to 86% for pollutants such as COD, BOD5, TN, and TP. A high yield of biomass was recorded for both beds with slight differences. Based on the results, a design recommendation was developed for full-scale systems of short rotation coppice irrigated with wastewater under various operational conditions, which show these systems to be a viable method for treating wastewater and producing biomass for energy production in Mongolia

    First Experiences with Newborn Screening for Congenital Hypothyroidism in Ulaanbaatar, Mongolia

    No full text
    Congenital hypothyroidism (CH) is among the most common conditions leading to intellectual disability, which can be prevented by early detection through newborn screening (NBS). In Mongolia, a regional screening program for CH was launched in 2000, which was supported by the International Atomic Energy Agency (IAEA) for the Asia Pacific Region. In our present study, a total of 23,002 newborns from nine districts in Ulaanbaatar were screened between 2012 and 2020, by the measurement of the thyroid-stimulating hormone (TSH) from dried blood spots, sampled 24 to 72 h after birth. The level of TSH was measured by the DELFIA assay. The overall CH prevalence confirmed at birth was 1/2091. The female-to-male ratio for CH cases was 1.8:1. The majority of patients were asymptomatic (72.7% of CH cases); umbilical hernia and cold or mottled skin were reported symptoms in patients with CH (27.3%). Thyroid dysgenesis (hypoplasia and agenesis) was the most common etiology, with a total of nine cases (81.8%) out of the eleven patients. The lapse between the birth date and the initiation of L-thyroxine treatment in CH-positive children was lower than 15 days in 63.64% of cases or 15 to 30 days in 36.36% of children. Further research is required to expand the screening coverage for CH in Mongolia

    Preliminary Planning and Optimization Approach for Wastewater Infrastructure for Regions with Low Data Availability

    No full text
    For decades, there has been ongoing discussion about whether centralized or decentralized wastewater management systems are better. Decision-makers need to define the best option but do not always have the necessary tools to develop, compare, and identify the most appropriate solution. To address this, studies have been conducted on a settlement level. In this study, the main focus was to develop and optimize wastewater management scenarios for a region containing rural areas, where data scarcity was an issue, by extracting scenario-relevant information from the region using a satellite image and its calibration using locally available data. We selected a study region in India containing 184 villages with a total population of around 210,000 and covering an area of around 400 km2. The study considered three different scenarios for the study area: centralized, decentralized, and an optimized scenario, which consists of a hybrid system involving partly decentralized and partly semi-centralized (clustered) infrastructure. The study developed a systematic approach for defining an optimized cluster of villages by considering the cost trade-off between the wastewater treatment plant (WWTP) capacity and sewer network layout. The results showed that the clustered and decentralized scenarios were nearly equal in terms of cost (around EUR 118 million), while the centralized scenario showed a relatively high cost of EUR 168 million. Potential applications and further development of the method were also considered. The proposed methodology may aid global wastewater management by estimating and optimizing infrastructure costs needed to fulfill Sustainable Development Goal 6 (SDG#6) in rural regions
    corecore