28 research outputs found

    Clozapine Increases Nestin Concentration in the Adult Male Rat Hippocampus: A Preliminary Study

    Get PDF
    Patients with schizophrenia, and rodent models of the disease, both exhibit suppressed neurogenesis, with antipsychotics possibly enhancing neurogenesis in pre-clinical models. Nestin, a cytoskeletal protein, is implicated in neuronal differentiation and adult neurogenesis. We hy-pothesized that schizophrenia pathogenesis involves nestin downregulation; however, few studies have related nestin to schizophrenia. We assessed nestin protein concentration, prepulse inhibition (PPI), and social interaction in the MK-801 model of schizophrenia, with or without antipsychotic (clozapine) treatment. Adult male Sprague–Dawley rats were intraperitoneally administered saline or MK-801 (0.1 mg/kg) to produce a schizophrenia-like phenotype, with concomitant subcutaneous injections of vehicle or clozapine (5 mg/kg). PPI was assessed on days 1, 8, and 15, and social interaction was assessed on day 4. Hippocampus tissue samples were dissected for Western blotting of nestin concentration. MK-801 alone did not alter nestin concentration, while clozapine alone enhanced hippocampal nestin concentration; this effect was not apparent in animals with MK-801 and clozapine co-administration. MK-801 also produced schizophrenia-like PPI disruptions, some of which were reversed by clozapine. Social interaction deficits were not detected in this model. This is the first report of clozapine-induced enhancements of hippocampal nestin concentration that might be mediated by NMDA receptors. Future studies will explore the impact of neurodevelopmental nestin concentration on symptom onset and antipsychotic treatment

    Machine Learning Based Classification of Deep Brain Stimulation Outcomes in a Rat Model of Binge Eating Using Ventral Striatal Oscillations

    Get PDF
    Neuromodulation-based interventions continue to be evaluated across an array of appetitive disorders but broader implementation of these approaches remains limited due to variable treatment outcomes. We hypothesize that individual variation in treatment outcomes may be linked to differences in the networks underlying these disorders. Here, Sprague-Dawley rats received deep brain stimulation separately within each nucleus accumbens (NAc) sub-region (core and shell) using a within-animal crossover design in a rat model of binge eating. Significant reductions in binge size were observed with stimulation of either target but with significant variation in effectiveness across individuals. When features of local field potentials (LFPs) recorded from the NAc were used to classify the pre-defined stimulation outcomes (response or non-response) from each rat using a machine-learning approach (lasso), stimulation outcomes could be classified with greater accuracy than expected by chance (effect sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest that individual differences in underlying network activity may relate to the variable outcomes of circuit based interventions, and measures of network activity could have the potential to individually guide the selection of an optimal stimulation target to improve overall treatment response rates

    Sex Differences in the Behavioural Outcomes of Prenatal Nicotine and Tobacco Exposure

    Get PDF
    Smoking remains the leading cause of preventable death worldwide. A combination of biological and environmental risk factors make women especially vulnerable to nicotine addiction, making it harder for them to quit smoking. Smoking during pregnancy, therefore, is still a major health concern, with epidemiological data suggesting a role for gestational nicotine exposure in the development of several behavioural disorders. Given there are significant sex-specific behavioural outcomes related to smoking in adolescence and adulthood, it is probable that the behavioural outcomes following gestational nicotine or tobacco exposure are similarly sex-dependent. This is an especially relevant topic as the current landscape of nicotine use shifts toward vaping, a mode of high doses of nicotine delivery that is largely believed to be a safer alternative to cigarettes among the public as well as among pregnant women. Here we review existing clinical and preclinical findings regarding the sex-dependent behavioural outcomes of prenatal nicotine exposure. We also highlight the challenges within this literature, particularly those areas in which further research is necessary to improve consistency within, and between, clinical and preclinical findings

    Cannabis Vapor Exposure Alters Neural Circuit Oscillatory Activity in a Neurodevelopmental Model of Schizophrenia: Exploring the Differential Impact of Cannabis Constituents

    Get PDF
    Cannabis use is highly prevalent in patients with schizophrenia and worsens the course of the disorder. To understand how exposure to cannabis changes schizophrenia-related oscillatory disruptions, we investigated the impact of administering cannabis vapor containing either Δ9-tetrahydrocannabinol (THC) or balanced THC/cannabidiol (CBD) on oscillatory activity in the neonatal ventral hippocampal lesion (NVHL) rat model of schizophrenia. Male Sprague Dawley rats underwent lesion or sham surgeries on postnatal day 7. In adulthood, electrodes were implanted targeting the cingulate cortex (Cg), the prelimbic cortex (PrLC), the hippocampus (HIP), and the nucleus accumbens (NAc). Local field potential recordings were obtained after rats were administered either the THC-only cannabis vapor (8-18% THC/0% CBD) or the Balanced THC:CBD cannabis vapor (4-11% THC/8.5-15.5% CBD) in a cross-over design with a 2-week wash-out period between exposures. Compared to controls, NVHL rats had reduced baseline gamma power in the Cg, HIP, and NAc, and reduced HIP-Cg high-gamma coherence. THC-only vapor exposure broadly suppressed oscillatory power and coherence, even beyond the baseline reductions observed in NHVL rats. Balanced THC:CBD vapor, however, did not suppress oscillatory power and coherence, and in some instances enhanced power. For NVHL rats, THC-only vapor normalized the baseline HIP-Cg high-gamma coherence deficits. NHVL rats demonstrated a 20 ms delay in HIP theta to high-gamma phase coupling, which was not apparent in the PrLC and NAc after both exposures. In conclusion, cannabis vapor exposure has varying impacts on oscillatory activity in NVHL rats, and the relative composition of naturally occurring cannabinoids may contribute to this variability

    Glutamine and GABA alterations in cingulate cortex may underlie alcohol drinking in a rat model of co-occurring alcohol use disorder and schizophrenia: an 1H-MRS study

    Get PDF
    Alcohol use disorder commonly occurs in patients with schizophrenia and significantly worsens the clinical course of the disorder. The neurobiological underpinnings of alcohol drinking are not well understood. Magnetic resonance spectroscopy (MRS) has been used to assess the neurochemical substrates that may be associated with alcohol drinking in patients; however, the causal impact of these findings remains elusive, highlighting the need for studies in animal models. This study performed MRS in the neonatal ventral hippocampal lesioned (NVHL) rat model, a model of co-occurring schizophrenia and substance use disorders. NVHL lesions (or sham surgeries) were performed on post-natal day 7 and animals were given brief exposure to alcohol during adolescence (10% v/v in a 2-bottle choice design). Animals were re-exposed to alcohol during adulthood (20% v/v) until a stable drinking baseline was established, and then forced into abstinence to control for the effects of differential alcohol drinking. Animals were scanned for MRS after one month of abstinence. NVHL rats consumed significantly more alcohol than sham rats and in the cingulate cortex showed significantly higher levels of GABA and glutamine. Significantly lower GABA levels were observed in the nucleus accumbens. No differences between the NVHL and sham animals were observed in the hippocampus. Correlation analysis revealed that GABA and glutamine concentrations in the cingulate cortex significantly correlated with the rats’ alcohol drinking prior to 30 days of forced abstinence. These findings suggest that a potential dysfunction in the glutamate/GABA–glutamine cycle may contribute to alcohol drinking in a rat model of schizophrenia, and this dysfunction could be targeted in future treatment-focused studies

    Machine Learning Based Classification of Deep Brain Stimulation Outcomes in a Rat Model of Binge Eating Using Ventral Striatal Oscillations

    Get PDF
    Neuromodulation-based interventions continue to be evaluated across an array of appetitive disorders but broader implementation of these approaches remains limited due to variable treatment outcomes. We hypothesize that individual variation in treatment outcomes may be linked to differences in the networks underlying these disorders. Here, Sprague-Dawley rats received deep brain stimulation separately within each nucleus accumbens (NAc) sub-region (core and shell) using a within-animal crossover design in a rat model of binge eating. Significant reductions in binge size were observed with stimulation of either target but with significant variation in effectiveness across individuals. When features of local field potentials (LFPs) recorded from the NAc were used as predictors of the pre-defined stimulation outcomes (response or non-response) from each rat using a machine-learning approach (lasso), stimulation outcomes could be predicted with greater accuracy than expected by chance (effect sizes: core = 1.13, shell = 1.05). Further, these LFP features could be used to identify the best stimulation target for each animal (core vs. shell) with an effect size = 0.96. These data suggest that individual differences in underlying network activity may contribute to the variable outcomes of circuit based interventions and that measures of network activity have the potential to individually guide the selection of an optimal stimulation target and improve overall treatment response rates

    Maternal immune activation and adolescent alcohol exposure increase alcohol drinking and disrupt cortical-striatal-hippocampal oscillations in adult offspring

    Get PDF
    Maternal immune activation (MIA) is strongly associated with an increased risk of developing mental illness in adulthood, which often co-occurs with alcohol misuse. The current study aimed to begin to determine whether MIA, combined with adolescent alcohol exposure (AE), could be used as a model with which we could study the neurobiological mechanisms behind such co-occurring disorders. Pregnant Sprague-Dawley rats were treated with polyI:C or saline on gestational day 15. Half of the offspring were given continuous access to alcohol during adolescence, leading to four experimental groups: controls, MIA, AE, and Dual (MIA + AE). We then evaluated whether MIA and/or AE alter: (1) alcohol consumption; (2) locomotor behavior; and (3) cortical-striatal-hippocampal local field potentials (LFPs) in adult offspring. Dual rats, particularly females, drank significantly more alcohol in adulthood compared to all other groups. MIA led to reduced locomotor behavior in males only. Using machine learning to build predictive models from LFPs, we were able to differentiate Dual rats from control rats and AE rats in both sexes, and Dual rats from MIA rats in females. These data suggest that Dual “hits” (MIA + AE) increases substance use behavior and disrupts activity in reward-related circuits, and that this may be a valuable heuristic model we can use to study the neurobiological underpinnings of co-occurring disorders. Our future work aims to extend these findings to other addictive substances to enhance the translational relevance of this model, as well as determine whether amelioration of these circuit disruptions can reduce substance use behavior

    The Impact of Sex, Circadian Disruption, and the Clock\u3csup\u3e∆19/∆19\u3c/sup\u3e Genotype on Alcohol Drinking in Mice

    Get PDF
    Shift work is associated with increased alcohol drinking, more so in males than females, and is thought to be a coping mechanism for disrupted sleep cycles. However, little is presently known about the causal influence of circadian rhythm disruptions on sex differences in alcohol consumption. In this study, we disrupted circadian rhythms in female and male mice using both environmental (i.e., shifting diurnal cycles) and genetic (i.e., Clock∆19/∆19 mutation) manipulations, and measured changes in alcohol consumption and preference using a two-bottle choice paradigm. Alcohol consumption and preference, as well as food and water consumption, total caloric intake, and weight were assessed in adult female and male Clock∆19/∆19 mutant mice or wild-type (WT) litter-mates, housed under a 12-hour:12-hour light:dark (L:D) cycle or a shortened 10-hour:10-hour L:D cycle. Female WT mice (under both light cycles) increased their alcohol consumption and preference over time, a pattern not observed in male WT mice. Compared to WT mice, Clock∆19/∆19 mice displayed increased alcohol consumption and preference. Sex differences were not apparent in Clock∆19/∆19 mice, with or without shifting diurnal cycles. In conclusion, sex differences in alcohol consumption patterns are evident and increase with prolonged access to alcohol. Disrupting circadian rhythms by mutating the Clock gene greatly increases alcohol consumption and abolishes sex differences present in WT animals

    A novel allosteric modulator of the cannabinoid CB1 receptor ameliorates hyperdopaminergia endophenotypes in rodent models

    Get PDF
    Funding and disclosure The authors declare the following financial and biomedical conflict of interests: Ruth A. Ross, Catharine A. Mielnik, Amy J. Ramsey, Iain R. Greig, Laurent A. Trembleau, Mostafa H. Abdelrahman are co-inventors on a patent application related to ABM300 and structural analogs. Kim S. Sugamori, David B. Finlay, Hayley H.A. Thorpe, Matthieu Schapira, Nirunthan Sivananthan, Chun Kit Li, Vincent M. Lam, Sean Harrington, W. McIntyre Burnham, Jibran Y. Khokhar, Ali Salahpour, Michelle Glass reported no biomedical financial interests or potential conflicts of interest. W. McIntyre Burnham received Δ9- (THC) as a gift from MedReleaf. The authors would like to gratefully acknowledge Wendy Horsfall for mouse colony maintenance. The work was funded by grants to RAR from CIHR (PPP-125784, PP2-139101), CIHR funding to AJR (MOP119298) and CIHR funding to AS (PJT-15619).Peer reviewedPostprintPublisher PD

    An Investigation of CYP2B in Rat Brain: Regulation and Role in Drug and Toxin Response

    No full text
    INTRODUCTION: Cytochrome P450 2B (CYP2B) is a drug-metabolizing enzyme subfamily found in both the brain and liver, which metabolizes clinical drugs, drugs of abuse (e.g. nicotine), toxicants and endogenous neurochemicals. Brain CYP2B’s role in the local metabolism of centrally acting substrates is important to investigate because of its ability to metabolize a variety of centrally active substrates. Additionally, CYP2B regulation by genetics, and exposure to xenobiotics, results in great inter-individual differences in the brain expression of this enzyme. METHODS: We investigated the time-course of rat brain CYP2B induction after chronic nicotine treatment. Using the rat model of brain CYP2B induction, combined with intracerebroventricular (ICV) inhibition of CYP2B, we assessed the effects of brain CYP2B in the response to the anaesthetic substrate, propofol. We also investigated the role of brain CYP2B-mediated activation of the pesticide chlorpyrifos on its neurotoxicity. RESULTS: Nicotine’s induction of rat brain CYP2B was long lasting, returning to basal levels by day 7, and was unaffected by nicotinic receptor blockade. Induction of CYP2B in rat brain, by chronic nicotine treatment, reduced the anaesthetic efficacy of propofol, through increased brain CYP2B-mediated metabolic inactivation. Inhibition of brain CYP2B, using mechanism based inhibitors of the enzyme, inhibited both basal and induced brain CYP2B activity, and prolonged propofol sleep time by reducing the local brain inactivation of the anaesthetic. Inhibition of rat brain, and not hepatic, CYP2B was able to effectively block local brain production of the toxic chlorpyrifos oxon, significantly attenuating the reductions in brain acetylcholinesterase activity and body temperature. Additionally, inhibition of brain CYP2B also significantly reduced the behavioural toxicity after chlorpyrifos exposure in a chlorpyrifos (CP) dose- and time-dependent manner. CONCLUSION: These studies indicate that rat brain CYP2B enzymes are active in vivo and play a meaningful role in the local metabolism of, and the response to, centrally acting substrates (i.e. propofol, chlorpyrifos). These data provide a first demonstration of the important role that brain CYP-mediated metabolism plays in the response to centrally acting substrates (i.e. clinical drugs, toxicants, endogenous neurochemicals), potentially contributing to the inter-individual variability seen in human responses to centrally active drugs and toxicants.Ph
    corecore